
Target Support Package™ 4
User’s Guide

For Use with Texas Instruments C2000™

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Target Support Package™ User’s Guide

© COPYRIGHT 2003–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
November 2003 Online only New for Version 1.0 (Release 13SP1+)
June 2003 Online only New for Version 1.1 (Release 14)
October 2004 Online only Revised for Version 1.1.1 (Release 14SP1)
December 2004 Online only Revised for Version 1.2 (Release 14SP1+)
March 2005 Online only Revised for Version 1.2.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 3.0 (Release 2008a)
October 2008 Online only Revised for Version 3.1 (Release 2008b)
March 2009 Online only Revised for Version 3.2 (Release 2009a)
September 2009 Online only Revised for Version 4.0 (Release 2009b)
March 2010 Online only Revised for Version 4.1 (Release 2010a)

Contents

Getting Started

1
Product Overview . 1-2
Introduction . 1-2
Product Description . 1-2

Setting Up and Configuring . 1-3
System Requirements . 1-3
Supported Hardware . 1-3
Installing and Configuring Software 1-3
Verifying the Configuration . 1-4

Code Composer Studio . 1-7
Using Code Composer Studio with Target Support Package
Software . 1-7

Default Project Configuration . 1-7

Data Type Support . 1-9

Scheduling and Timing . 1-10
Overview . 1-10
Timer-Based Interrupt Processing . 1-10
Asynchronous Interrupt Processing 1-11

Sharing General Purpose Timers between C281x
Peripherals . 1-16
Example 1 . 1-17
Example 2 . 1-21

Overview of Creating Models for Targeting 1-25
Accessing the Target Support Package Block Library 1-25
Online Help . 1-26
Blocks with Restrictions . 1-26
Setting Simulation Configuration Parameters 1-28
Building Your Model . 1-29

v

Using the c2000lib Blockset . 1-30
Introduction . 1-30
Hardware Setup . 1-30
Starting the c2000lib Library . 1-31
Setting Up the Model . 1-33
Adding Blocks to the Model . 1-35
Generating Code from the Model . 1-38

Configuring Timing Parameters for CAN Blocks

2
The CAN Blocks . 2-2

Setting Timing Parameters . 2-3
Accessing the Timing Parameters . 2-3
Determining Timing Parameter Values 2-6
CAN Bit Timing Example . 2-7

Parameter Tuning and Signal Logging 2-9
Overview . 2-9
Using External Mode . 2-9
Using a Third Party Calibration Tool 2-18

Configuring Acquisition Window Width for ADC
Blocks

3
What Is an Acquisition Window? . 3-2

Configuring ADC Parameters for Acquisition Window
Width . 3-5
Accessing the ADC Parameters . 3-5
Examples . 3-7

vi Contents

Using the IQmath Library

4
About the IQmath Library . 4-2
Introduction . 4-2
Common Characteristics . 4-3
References . 4-3

Fixed-Point Numbers . 4-4
Notation . 4-4
Signed Fixed-Point Numbers . 4-5
Q Format Notation . 4-5

Building Models . 4-10
Overview . 4-10
Converting Data Types . 4-10
Using Sources and Sinks . 4-11
Choosing Blocks to Optimize Code . 4-11
Double and Single-Precision Parameter Values 4-11

Programming Flash Memory

5
Introduction . 5-2

Installing TI Flash APIs . 5-3

Configuring the DSP Board Bootloader 5-4

Configuring the Software for Automatic Flash
Programming . 5-5

Selectively Erase, Program, or Verify Specific Flash
Sectors . 5-7

vii

Placing Additional Code or Data on Unused Flash
Sectors . 5-8

Block Reference

6
C280x (c280xlib) . 6-2

C2802x (c2802xlib) . 6-4

C2803x (c2803xlib) . 6-6

C281x (c281xlib) . 6-8

C28x3x (c2833xlib) . 6-10

C28x DMC (c28xdmclib) . 6-12

C28x IQmath (tiiqmathlib) . 6-13

Host SCI Blocks (c2000scilib) . 6-14

RTDX Instrumentation (rtdxBlocks) 6-15

Target Preferences (c2000tgtpreflib) 6-16

viii Contents

Blocks — Alphabetical List

7

Index

ix

x Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Setting Up and Configuring” on page 1-3

• “Code Composer Studio” on page 1-7

• “Data Type Support” on page 1-9

• “Scheduling and Timing” on page 1-10

• “Sharing General Purpose Timers between C281x Peripherals” on page 1-16

• “Overview of Creating Models for Targeting” on page 1-25

• “Using the c2000lib Blockset” on page 1-30

1 Getting Started

Product Overview

In this section...

“Introduction” on page 1-2

“Product Description” on page 1-2

Introduction
This chapter describes how to use Target Support Package™ software
to create and execute applications on Texas Instruments™ C2000™
microcontrollers. To use the targeting software, become familiar with creating
Simulink® models and with the basic concepts of using Real-Time Workshop®

for automatic code generation. For more information about these concepts,
refer to the “Real-Time Workshop” documentation.

Product Description
Use Target Support Package to deploy generated code for real-time execution
on embedded microprocessors, microcontrollers, and DSPs. Using Target
Support Package, you can integrate peripheral devices and real-time
operating systems with the algorithms created using Embedded MATLAB™,
Simulink®, and Stateflow®. You can deploy the resulting executable onto
embedded hardware for on-target rapid prototyping, real-time performance
analysis, and field production.

1-2

Setting Up and Configuring

Setting Up and Configuring

In this section...

“System Requirements” on page 1-3

“Supported Hardware” on page 1-3

“Installing and Configuring Software” on page 1-3

“Verifying the Configuration” on page 1-4

System Requirements

For detailed information about the software and hardware required to use
Target Support Package software, refer to the Target Support Package system
requirements areas on the MathWorks Web site:

• Requirements for Target Support Package:
www.mathworks.com/products/target-package/requirements.html

• Requirements for use with TI’s C2000:
www.mathworks.com/products/target-package/ti-adaptor/

Supported Hardware
For a list of supported hardware, visit
http://www.mathworks.com/products/target-package/supportedio.html.

Installing and Configuring Software
Consult the System Requirements for Target Support Package on the
MathWorks website. Only use supported versions of the software listed under
“Third-Party Target Support Package Requirements”. Uninstall unsupported
versions before installing supported versions. Doing so prevents errors that
occur when the Windows Environment Variables points to the unsupported
versions.

The System Requirements Web page describes where you can obtain the
additional third-party software, and when available, provides links for
downloading that software.

1-3

http://www.mathworks.com/products/target-package/requirements.html
http://www.mathworks.com/products/target-package/ti-adaptor/
http://www.mathworks.com/products/target-package/supportedio.html
http://www.mathworks.com/products/target-package/requirements.html
http://www.mathworks.com/products/target-package/requirements.html

1 Getting Started

Requirements for Target Support Package:
www.mathworks.com/products/target-package/requirements.html

Install the software listed in the following order:

1 Install the required and optional MathWorks software. (The software
license you purchase determines which products are available.)

2 Install TI Code Composer Studio™ (CCS).

3 Install TI Service Release for CCS.

4 Install the TI Code Generation Tools for Windows.

5 If you are using a Spectrum Digital board, download and install the
matching Spectrum Digital Driver.

6 If you are using RTDX for C28x host/target communications, download
and install TI DSP/BIOS.

7 If you are going to program flash memory with stand-alone code, download
the TI Flash API for your target processor.

Configure CCS as follows:

1 In CCS, open Help > About > Component manager > Build tools >
TMS320C28XX and select (check) C2000 Code Generation Tools.

2 With the Component manager open, open Target Content(DSP/BIOS) >
TMS320C28XX and select Texas Instruments DSP/BIOS.

3 Save, exit, and restart CCS.

Verifying the Configuration
To determine whether Target Support Package software is present on your
system, enter this command at the MATLAB® prompt:

c2000lib

MATLAB displays the C2000 block libraries, as shown here:

1-4

http://www.mathworks.com/products/target-package/requirements.html

Setting Up and Configuring

If you do not see the listed libraries, or MATLAB does not recognize the
command, install the Target Support Package software. Without the software,
you cannot use Simulink and Real-Time Workshop software to develop
applications targeted to the TI boards.

To verify that Code Composer Studio (CCS) is present on your machine, enter
this command at the MATLAB prompt:

ccsboardinfo

With CCS installed and configured, MATLAB returns a list of the boards that
CCS recognizes on your machine like the following example:

Board Board Proc Processor Processor
Num Name Num Name Type
--- ---------------------------------- ---
1 F2812 Simulator 0 CPU TMS320C28xx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

1-5

1 Getting Started

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For Target
Support Package software to operate with CCS, the CCS IDE must be able to
run on its own.

Note For any model to work in the targeting environment, select the
discrete-time solver in the Solver pane of the Simulink Configuration
Parameters dialog box. Targeting does not work with continuous-time solvers.

To select the discrete-time solver, from the main menu in your model window,
select Simulation > Configuration Parameters. Then in the Solver pane,
set the Solver option to Discrete (no continuous states).

1-6

Code Composer Studio™

Code Composer Studio

In this section...

“Using Code Composer Studio with Target Support Package Software” on
page 1-7

“Default Project Configuration” on page 1-7

Using Code Composer Studio with Target Support
Package Software
Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE). Used in combination with Target Support Package software and
Real-Time Workshop software, CCS provides an integrated environment that,
once installed, requires no coding.

Executing code generated from Real-Time Workshop software on a particular
target requires that you tailor the code to the specific hardware target.
Target-specific code includes I/O device drivers and interrupt service routines
(ISRs). The software must use CCS to compile and link the generated source
code in order to load and execute on a TI DSP. To help you to build an
executable, Target Support Package software uses Embedded IDE Link™
software to start the code building process within CCS. After you download
your executable to your target and run it, the code runs wholly on the target.
You can access the running process only from the CCS debugging tools or
across a link using Embedded IDE Link software.

Default Project Configuration
CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to all files in your project. For
more information about the build options, refer to your TI documentation.
The models you build with Target Support Package software use a custom
configuration that provides a third combination of build and optimization
settings — CustomMW.

1-7

1 Getting Started

Default Build Options in the CustomMW Configuration
The default settings for CustomMW are the same as the Release project
configuration in CCS, except for the compiler options.

Your CCS documentation provides complete details on the compiler build
options. You can change the individual settings or the build configuration
within CCS.

1-8

Data Type Support

Data Type Support
TI C2000 DSPs support 16 and 32–bit data types, but does not have native
8-bit data types. Simulink models and Target Support Package software
support many data types, including 8-bit data types.

If you select int8 or uint8 in your model, your simulation runs with 8-bit
data, but in the generated code, that data will be represented as 16-bit. This
may cause instances where data overflow and wraparound occurs in the
simulation, but not in the generated code.

For example, to make the overflow behavior of the simulation and generated
code match for a Simulink Add block in your model, select Saturate on
integer overflow in that block.

1-9

1 Getting Started

Scheduling and Timing

In this section...

“Overview” on page 1-10

“Timer-Based Interrupt Processing” on page 1-10

“Asynchronous Interrupt Processing” on page 1-11

Overview
Normally the code generated by Target Support Package software runs in
the context of a timer interrupt. Model blocks run in a periodical fashion
clocked by the periodical interrupt whose period is tied to the base sample
time of the model.

This execution scheduling model, however, is not flexible enough for many
systems, especially control and communication systems, which must respond
to external events in real time. Such systems require the ability to handle
various hardware interrupts in an asynchronous fashion.

Target Support Package software lets you model and generate code for such
systems by creating tasks driven by Hardware Interrupt blocks in addition to
the tasks that are left to be handled in the context of the timer interrupt.

Timer-Based Interrupt Processing
For code that runs in the context of the timer interrupt, each iteration of
the model solver is run after an interrupt has been posted and serviced by
an interrupt service routine (ISR). The code generated for the C280x, C281x,
and C28x3x uses CPU_timer0.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set
up to ensure the desired rate as follows:

BaseRateSampleTime
TimerPeriod

TimerClockSpeed
=

1-10

Scheduling and Timing

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812, F2808, and F28x35) and the CPU clock speed. The CPU
clock speed is 100 MHz for the F2808, and 150 MHz for the F2812 and F28335.

If all the blocks in the model inherit their sample time value, and no sample
time is explicitly defined, the default value is 0.2 s.

High-Speed Peripheral Clock
The Event Managers and their general-purpose timers, which drive PWM
waveform generation use the high-speed peripheral clock (HISCLK). By
default, this clock is always selected in Target Support Package software.
This clock is derived from the system clock (SYSCLKOUT):

HISCLK = [SYSCLKOUT / (high-speed peripheral prescaler)]

The high-speed peripheral prescaler is determined by the HSPCLK bits
set in SysCtrl. The default value of HSPCLK is 1, which corresponds to a
high-speed peripheral prescaler value of 2.

For example, on the F2812, the HISCLK rate becomes

HISCLK = 150 MHz / 2 = 75 MHz

Asynchronous Interrupt Processing
Simulink and Real-Time Workshop software facilitate the modeling and
generation of code for asynchronous event handling, including servicing of
hardware-generated interrupts, by using the following special blocks:

• Hardware Interrupt block

This block enables selected hardware interrupts, generates the
corresponding interrupt service routines (ISRs), and connects them to the
corresponding interrupt service vector table entries. When you connect
the output of the Hardware Interrupt block to the control input of a
triggered subsystem (for example, a function-call subsystem), the generated
subsystem code is called from the ISRs.

Target Support Package software provides a Hardware Interrupt block for
each of the supported processor families.

1-11

1 Getting Started

• Rate Transition blocks

These blocks support data transfers between blocks running with different
sample rates. The built-in Simulink Rate Transition blocks can be used
for this purpose.

The following diagram illustrates a use case where a Hardware Interrupt
block triggers two tasks, connected to other blocks that run periodically in the
context of the synchronous scheduler.

In the preceding figure, the Hardware Interrupt block is set to react on two
interrupts. Since only one Hardware Interrupt block is allowed in a model
and the output of this block is a vector of length two, you must connect the
Hardware Interrupt block to a Demux block to trigger the two function-call
subsystems. The function-call subsystems contain the blocks that are
executed asynchronously in the context of the hardware interrupt.

The following example shows how to build and configure a model to react on an
eCAN message using a hardware interrupt and an asynchronous scheduler:

1 Place the eCAN Receive block in a function-call subsystem, as shown in
the following figure.

1-12

Scheduling and Timing

2 On the eCAN Receive block dialog, check the box labeled Post interrupt
when message is received, as shown in the following figure.

3 Set the Sample Time of the eCAN Receive block to -1 since the block will
be triggered by the ISR, as shown in the preceding figure.

1-13

1 Getting Started

4 Add the C281x Hardware Interrupt block to your model, as shown in the
following figure.

5 The eCAN interrupt on C281x chips is on CPU line 9 and PIE line 5
for module 0. These parameters can be found in the C281x Hardware
Interrupt block, C281x Peripheral Interrupt Vector Values figure. Set the
hardware interrupt parameters CPU interrupt number(s): to 9, and PIE
interrupt number(s): to 5 as shown in the following figure.

1-14

Scheduling and Timing

6 Connect the output of the Hardware Interrupt block to the function-call
subsystem containing the eCAN block.

At execution time, when a new eCAN message is received, the eCAN
interrupt is triggered, and the code you placed in the function-call subsystem
is executed. In this example, the eCAN Receive block is placed in the
function-call subsystem, which means that the message is read and is passed
to the rest of the code.

For more information, see the section on Asynchronous Support in the
Real-Time Workshop documentation.

1-15

1 Getting Started

Sharing General Purpose Timers between C281x
Peripherals

TMS320x281x DSP devices have four General Purpose (GP) timers. Each
Event Manager (EV) module includes two GP timers:

• EVA includes GP Timer 1 and GP Timer 2.

• EVB includes GP Timer 3 and GP Timer 4.

You can use the GP Timers independently or to operate peripherals associated
with the EV Manager, such as PWM, QEP, and CAP.

The following table describes the timer-peripheral mapping of the c281xlib
block library.

GP Timer Use for C281x Peripheral Blocks

GP Timer 1 GP Timer 2 GP Timer 3 GP Timer 4

PWM1-PWM6

PWM7-PWM12

QEP1-QEP2

QEP3-QEP4

CAP1-CAP3

CAP4-CAP6

Each PWM and QEP peripheral has access to only one timer, while each CAP
peripheral has access to two timers. In the PWM and QEP blocks, you can
set theModule option to A or B to determine which unique timer-peripheral
combination the block configures. By comparison, in the CAP block, you can
use the Time base option to select one of two timers for each CAP peripheral.

Each GP timer is available to multiple peripherals. For example:

• PWM1-PWM6 and CAP1-CAP3 share GP Timer 1

• PWM7-PWM12 and CAP4-CAP6 share GP Timer 3

1-16

Sharing General Purpose Timers between C281x Peripherals

• QEP1-QEP2 and CAP1-CAP3 share GP Timer 2

• QEP3-QEP4 and CAP4-CAP6 share GP Timer 4

The PWM, QEP, CAP, and Timer blocks each provide independent access to
key timer registers. If the blocks in your model share a specific GP timer,
ensure that all the timer-related settings are compatible. If the peripheral
settings for a shared timer are not compatible, the software generates an
error when you update the model or generate code.

Example 1

The model contains Timer and CAP blocks that both use Timer 1 (GP Timer 1).

1-17

1 Getting Started

1-18

Sharing General Purpose Timers between C281x Peripherals

Both blocks have the same values for Timer prescaler and Counting
mode. However, each block has different values for Timer period. The
value of Timer period for Timer 1 is 65535 in the CAP block and 10000 in
the Timer block.

1-19

1 Getting Started

Since both blocks configure the same timer, and settings conflict, the software
generates an error when you update the model.

1-20

Sharing General Purpose Timers between C281x Peripherals

Example 2

The model contains QEP and CAP blocks that both use Timer 2. In the CAP
block, the Time base option shows which timer the block uses. In the QEP
block, setting Module to A configures the block to use QEP1–QEP2. GP
Timer Use for C281x Peripheral Blocks on page 1-16 shows that QEP1–QEP2
use Timer 2.

1-21

1 Getting Started

1-22

Sharing General Purpose Timers between C281x Peripherals

Currently, both blocks define different clock sources for Timer 2. The CAP
block uses Internal as a Clock source. The QEP block, which does not have
a configurable Clock source setting, uses the QEP circuit as a clock source.
If you build the model, the software generates the following error message.

1-23

1 Getting Started

To avoid generating errors when you build the model, change Clock source
in the CAP block to QEP device.

1-24

Overview of Creating Models for Targeting

Overview of Creating Models for Targeting

In this section...

“Accessing the Target Support Package Block Library” on page 1-25

“Online Help” on page 1-26

“Blocks with Restrictions” on page 1-26

“Setting Simulation Configuration Parameters” on page 1-28

“Building Your Model” on page 1-29

Accessing the Target Support Package Block Library
After you have installed the supported development board, start MATLAB. At
the MATLAB command prompt, type

c2000lib

This opens the c2000lib Simulink blockset that includes libraries containing
blocks predefined for C2000 input and output devices. As needed, add the
blocks to your model. See “Using the c2000lib Blockset” on page 1-30 for an
example of how to use this library.

Create your real-time model for your application the same way you create any
other Simulink model. Select blocks to build your model from the following
sources or products:

• The appropriate Target Preferences library block (for setting target and
application preferences)

• The appropriate libraries in the c2000lib block library (for handling input
and output functions for on your target hardware)

• Real-Time Workshop software

• Discrete time blocks from Simulink

• Any other blockset that meets your needs and operates in the discrete
time domain

1-25

1 Getting Started

Online Help
To get general help for Target Support Package software, use the help feature
in MATLAB. At the command prompt, type

help tic2000

to list the functions and block libraries included in Target Support Package
software. Or select Help > Full Product Family Help from the menu bar
in the MATLAB desktop. When you see the Contents in Help, select Target
Support Package.

Blocks with Restrictions
Some blocks may not work on the target as they do on your desktop, and
for that reason, you should avoid them altogether. Other blocks may
have restrictions in their settings, which, when followed, ensure smooth
communications. All the blocks that require this special consideration are
listed in the following sections.

Blocks to Avoid Using in Your Models
The blocks listed in the table below generate code, but they do not work on
the target as they do on your desktop—in general, they slow your signal
processing application without adding instrumentation value. For this reason,
The MathWorks recommends that you avoid using certain blocks, such as
the Scope block and some source and sink blocks, in Simulink models that
you use for TI C2000 DSP targets.

Library Category Block Name

Scope

To File

Sinks

To Workspace

From File

Simulink

Sources

From Workspace

1-26

Overview of Creating Models for Targeting

Library Category Block Name

Signal Operations Triggered Signal From
Workspace

Signal To Workspace

Spectrum Scope

Triggered to Workspace

Signal Processing Sinks

To Wave Device

Signal From Workspace

Signal Processing
Blockset™

Signal Processing
Sources From Wave Device

Blocks That Require Specific Settings
Any block listed in the following table can be used with all your models.
However, such a block requires specific settings, as indicated under
“Restriction.”

Library Category Block
Name

Restriction

Signal
Processing
Blockset

Signal
Processing
Sources

Random
Source
Block

For this block, the only Output data
type supported by the TI C2000 is
Single. Be sure to set this parameter
correctly in the Block Parameters
dialog box. See the following figure.

1-27

1 Getting Started

Setting Simulation Configuration Parameters
When you drag a Target Preferences block into your model, you are given the
option to set basic simulation parameters automatically.

To refine the automatic settings, or set the simulation parameters manually,
open your model and select Simulation > Configuration Parameters.

If you are setting your simulation parameters manually, you must make
at least the following two settings:

• You must specify discrete time by selecting Fixed-step and Discrete (no
continuous states) in the Solver pane of the Configuration Parameters
dialog box.

• You must also specify the appropriate version of the system target file in
the Real-Time Workshop pane. For Target Support Package software,
specify one of the following system target files, or click Browse and select
from the list of targets.

ccslink_grt.tlc
ccslink_ert.tlc

The associated template filename is automatically filled in.

System Target Types and Memory Management
There are two system target types that apply to Target Support Package
software. These correspond to the two system target files mentioned above.

A Generic Real-Time (GRT) target (such as ccslink_grt.tlc) is the target
configuration that generates model code for a real-time system as if the
resulting code was going to be executed on your workstation.

An Embedded Real-Time (ERT) target (such as ccslink_ert.tlc) is
the target configuration that generates model code for execution on an
independent embedded real-time system. This option requires Real-Time
Workshop Embedded Coder.

The ERT target for Target Support Package software offers memory
management features that give you a way manage the performance of your
code while working with limited memory resources. For more information

1-28

Overview of Creating Models for Targeting

on this, see the chapter on Memory Sections in the Real-Time Workshop
Embedded Coder User’s Guide.

Building Your Model
With this configuration, you can generate a real-time executable and
download it to your TI development board by clicking Generate Code on the
Real-Time Workshop pane. Real-Time Workshop software automatically
generates C code and inserts the I/O device drivers as specified by the
hardware blocks in your block diagram, if any. These device drivers are
inserted in the generated C code.

During the same build operation, block parameter dialog box entries are
combined into a project file for CCS for your TI C2000 board. If you selected
the Build and execute build action in the configuration settings, the TI
cross-compiler builds an executable file. After automatically downloading the
executable file to the target, the build process runs the file on the board’s DSP.

Note After using the run-time Build option to generate and build code for
your application, you must perform the following reset sequence before you
can run that code on your board. If you want to rerun your application
manually once it has been generated, you must also use this procedure.

F2812, F2808, and F28335 eZdsp Reset Sequence

1 Reset the board CPU.

2 Load your code onto the target.

3 Run your code on the target.

1-29

1 Getting Started

Using the c2000lib Blockset

In this section...

“Introduction” on page 1-30

“Hardware Setup” on page 1-30

“Starting the c2000lib Library” on page 1-31

“Setting Up the Model” on page 1-33

“Adding Blocks to the Model” on page 1-35

“Generating Code from the Model” on page 1-38

Introduction
This section uses an example to demonstrate how to create a Simulink model
that uses Target Support Package blocks to target your board. The example
creates a model that performs PWM duty cycle control via pulse width change.
It uses the C2812 ADC block to sample an analog voltage and the C2812
PWM block to generate a pulse waveform. The analog voltage controls the
duty cycle of the PWM and you can observe the duty cycle change on the
oscilloscope. This model is also provided in the Demos library. The model in
the Demos library also includes a model simulation.

Hardware Setup
The following hardware is needed for this example:

• Spectrum Digital eZdsp F2812

• Function generator

• Oscilloscope and probes

To connect the hardware:

1 Connect the function generator output to the ADC input ADCINA0 on
the eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of
the oscilloscope.

1-30

Using the c2000lib Blockset

3 Connect VREFLO to AGND on the eZdsp F2812. See the section
on the Analog Interface in Chapter 2 of the eZdsp™ F2812
Technical Reference, available from the Spectrum Digital website at
http://c2000.spectrumdigital.com/ezf2812/

Starting the c2000lib Library
At the MATLAB prompt, type

c2000lib

to open the c2000lib library blockset, which contains libraries of blocks
designed for targeting your board.

The libraries are in three groups, plus Info and Demos blocks.

General

• C2000 RTDX Instrumentation (rtdxBlocks) — Blocks for adding RTDX
communications channels to Simulink models. See the tutorial in
Embedded IDE Link documentation for an example of using these blocks.

1-31

http://c2000.spectrumdigital.com/ezf2812/

1 Getting Started

• C2000 Target Preferences (c2000tgtpreflib) — Blocks to specify Target
Preferences and options. You do not connect this block to any other block in
your model.

• Host-side CAN Blocks (canmsglib) — Blocks to configure CAN message
blocks.

• Host SCI Blocks (c2000scilib) — Blocks to configure host-side serial
communications interface to send and receive data from serial port

Chip Support

• C280x (c280xlib) — Blocks to configure the F2808 eZdsp DSK or on
C280x-based custom boards

• C281x (c281xlib) — Blocks to configure the F2812 eZdsp DSK or on
C281x-based custom boards

• C28x3x (c2833xlib) — Blocks to configure the F2833 eZdsp DSK or on
C28x3x-based custom boards

• C2802x (c2802xlib) — Blocks to configure the C2802x eZdsp DSK or on
C2802x-based custom boards

• C2803x (c2803xlib) — Blocks to configure the C2803x eZdsp DSK or on
C2803x-based custom boards

• Custom C2000 (c2000xlib) — Blocks to configure C2000-based custom
boards

Optimized Libraries
The Optimization library, c2000optimizedblks, contains:

• C28x IQmath Library (tiiqmathlib) — Fixed-point math blocks for use
with C28x targets

• C28x DMC Library (c28xdmclib) — Fixed-point math blocks for digital
motor control with C28x DSPs

1-32

Using the c2000lib Blockset

Setting Up the Model
Preliminary tasks for setting up a new model include adding a Target
Preferences block, setting or verifying Target Preferences, and setting the
simulation parameters.

1 In the Library: c2000lib window, select File > New > Model to create a
new Simulink model.

2 In the Library: c2000lib window, double-click the C2000 Target Preferences
library block.

3 From the Target Preferences Library window, drag the F2812 eZdsp block
into your new model.

4 Click Yes to allow automatic setup. The following settings are
made, referenced in the table below by their locations in the
Simulation > Configuration Parameters dialog box:

Pane Field Setting

Solver Stop time 10

Solver Type Fixed-step

Data
Import/Export

Save to workspace - Time tout

Data
Import/Export

Save to workspace -
Output

yout

Hardware
Implementation

Device type C2000

Real-Time
Workshop

Target selection - System
target file

ccslink_grt.tlc
or
ccslink_ert.tlc

1-33

1 Getting Started

Note Generated code does not honor Simulink stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in
generated code, you must put a Stop Simulation block in your model.

Note One Target Preferences block must be in each target model at the top
level. It does not connect to any other blocks, but stands alone to set the
Target Preferences for the model.

5 From your model’s main menu, select Simulation > Configuration
Parameters to verify and set the simulation parameters for this model.
Parameters you set in this dialog box belong to the model you are building.
They are saved with the model and stored in the model file. Refer to your
Simulink documentation for information on the Configuration Parameters
dialog box.

6 Use the Real-Time Workshop pane to set options for the real-time
model. Refer to your “Real-Time Workshop” documentation for detailed
information on the Real-Time Workshop pane options.

1-34

Using the c2000lib Blockset

7 Use the Browse button to locate and select a target configuration file,
ccslink_grt.tlc or ccslink_ert.tlc. When you do this, Real-Time
Workshop software chooses the appropriate system target file, and make
command.

8 Set the configuration parameters by typing Ctrl-E and adjust
these parameters. For descriptions of these fields, see the Target
Preferences/Custom Board reference page and “Setting Simulation
Configuration Parameters” on page 1-28 in the section titled “Overview of
Creating Models for Targeting” on page 1-25.

Adding Blocks to the Model

1 Open or double-click the C281x library, c281xlib.

1-35

1 Getting Started

2 Drag the C281x ADC block into your model. Double-click the ADC block
in the model and set Sample time to 64/80000. Use the default values
for all other fields. Refer to the C281x ADC reference page for information
on these fields.

1-36

Using the c2000lib Blockset

3 Drag the C281x PWM block into your model. Double-click the PWM block
in the model and set the following parameters. Refer to the C281x PWM
reference page for information on these fields.

Pane Field Parameter

Module A

Waveform
period source

Specify via dialog

Waveform
period units

Clock cycles

Waveform
period

64000

Timer

Waveform type Asymmetric

Enable
PWM1/PWM2

SelectedOutputs

Duty cycle
source

Input port

PWM1 control
logic

Active highLogic

PWM2 control
logic

Active low

Use
deadband for
PWM1/PWM2

Selected

Deadband
prescaler

16

Deadband

Deadband
period

12

ADC Control ADC start event Period interrupt

4 Enter Simulink at the MATLAB command line to open the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click the Gain block in the model and set the following
parameters in the Function Block Parameters dialog box. Click OK.

1-37

1 Getting Started

Pane Field Parameter

Gain 30

Multiplication Element-wise(K.*u)

Main

Sample time -1

Output data type
mode

uint(16)Signal Attributes

Integer rounding
mode

Floor

Parameter
Attributes

Parameter data type
mode

Inherit from input

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block as shown:

Generating Code from the Model
This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop software,
refer to the “Real-Time Workshop” documentation.

You start the automatic code generation process from the Simulink model
window by clicking Generate code in the Real-Time Workshop pane of the
Configuration Parameters dialog. Other ways of starting the code generation
process are by clicking the Incremental Build button on the toolbar of
your model, or by pressing the keyboard shortcut, Ctrl+B, while your model
is open and in focus.

Note In CCS, you see your project with the files in place in the folder
structure.

1-38

2

Configuring Timing
Parameters for CAN Blocks

• “The CAN Blocks” on page 2-2

• “Setting Timing Parameters” on page 2-3

• “Parameter Tuning and Signal Logging” on page 2-9

2 Configuring Timing Parameters for CAN Blocks

The CAN Blocks
The bit rate of these four CAN blocks cannot be set directly:

C281x eCAN Receive
C281x eCAN Transmit
C280x/C28x3x eCAN Receive
C280x/C28x3x eCAN Transmit

2-2

Setting Timing Parameters

Setting Timing Parameters

In this section...

“Accessing the Timing Parameters” on page 2-3

“Determining Timing Parameter Values” on page 2-6

“CAN Bit Timing Example” on page 2-7

Accessing the Timing Parameters
To set the bit rate for “The CAN Blocks”:

1 Confirm that your model includes the appropriate Target Preferences block
from the C2000 Target Preferences Library.

2 Double click the Target Preferences block in your model. This opens the
Target Preferences dialog box.

3 Under the Peripherals tab, use the TSEG1, TSEG2, and
BaudRatePrescaler (BRP) parameters to set the bit rate.

For example, the Target Preferences block for the F2812 eZdsp, this dialog
box is shown in the following figure.

2-3

2 Configuring Timing Parameters for CAN Blocks

The C280x/C28x3x blocks have two independent eCAN modules, as shown by
the Target Preferences Setup dialog box.

2-4

Setting Timing Parameters

The following sections describe the series of steps and rules that govern the
process of setting these timing parameters.

2-5

2 Configuring Timing Parameters for CAN Blocks

Determining Timing Parameter Values
To determine the appropriate values for the timing parameters, complete the
following steps:

1 Determine the CAN Bitrate specification based on your application.

2 Determine the frequency of the CAN module clock. For example:

• 100 MHz for the F2808 (Same as SYSCLKOUT)

• 150 MHz for the F2812 (Same as SYSCLKOUT)

• 75 MHz for the F28x3x (150 MHz SYSCLKOUT/2)

3 Estimate the value of the BaudRatePrescaler (BRP).

4 Solve this equation for BitTime:

BitTime = CAN module clock frequency/(BRP * Bitrate)

5 Solve this equation for Bitrate:

Bitrate = CAN module clock frequency/(BRP * BitTime)

6 Estimate values of TSEG1 and TSEG2 that satisfy the following equation:

BitTime TSEG TSEG= + +1 2 1

7 Use the following rules to determine the values of TSEG1and TSEG2:

TSEG1 >= TSEG2
IPT (Information Processing Time) = 3/BRP
IPT <= TSEG1 <= 16 TQ
IPT <= TSEG2 <= 8 TQ
1 TQ <= SJW <= min (4 TQ, TSEG2)

where IPT is Information Processing Time, TQ is Time Quanta, and SJW
is Synchronization Jump Width, also set in the Target Preferences
dialog box. .

8 Iterate steps 4 through 7 until the values selected for TSEG1, TSEG2, and
BRP meet all of the criteria.

2-6

Setting Timing Parameters

The following illustration shows the relationship between the eCAN bit
timing parameters.

CAN Bit Timing Example
Assume that SYSCLKOUT = 150 MHz, and a bit rate of 1 Mbits/s is required.

1 Set the BRP to 10. Then substitute the values of bit rate, BRP, and
SYSCLKOUT into the following equation, solving for BitTime:

BitTime SYSCLKOUT BRP Bitrate
BitTime TQ

=
= =

/(*)
/(*)150 10 1 15

2 Set the values of TSEG1 and TSEG2 to 8TQ and 6TQ respectively.
Substitute the values of BitTime from the previous equation, and the
chosen values for TSEG1 and TSEG2 into the following equation:

BitTime TSEG TSEG
TQ TQ TQ

= + +
= + +

1 2 1
15 8 6 1

3 Finally, check the selected values against the rules:

IPT = 3/BRP = 3/10 = .3

2-7

2 Configuring Timing Parameters for CAN Blocks

IPT <= TSEG1 <= 16 TQ True! .3<=8TQ<=16TQ
IPT <= TSEG2 <= 8TQ True! .3 <= 6TQ <= 8TQ
1TQ <= SJW <= min(4TQ, TSEG2) which means that SJW can be set to
either 2, 3, or 4

4 All chosen values satisfy the criteria, so no further iteration is necessary.

The following table provides common timing parameter settings for typical
values of Bit Rate and SYSCLKOUT = 150MHz. This clock frequency is the
maximum for the C281x blocks.

Bit Rate TSEG1 TSEG2 Bit Time BRP SJW

.5 Mbit/s 8 6 15 20 2

1 Mbit/s 8 6 15 10 2

2 Mbit/s 8 6 15 5 2

The following table provides common timing parameter settings for typical
values of Bit Rate and SYSCLKOUT = 100MHz. This clock frequency is the
maximum for the C280x/C28x3x blocks.

Bit Rate TSEG1 TSEG2 Bit Time BRP SJW

.5 6 3 10 20 2

1 5 4 10 10 2

2 6 3 10 5 2

2-8

Parameter Tuning and Signal Logging

Parameter Tuning and Signal Logging

In this section...

“Overview” on page 2-9

“Using External Mode” on page 2-9

“Using a Third Party Calibration Tool” on page 2-18

Overview
Target Support Package software supports parameter tuning and signal
logging either using Simulink external mode or with a third party calibration
tool. In both cases the model must include a CAN Calibration Protocol block.

Using External Mode
The Simulink external mode feature enables you to log signals and tune
parameters without requiring a calibration tool. This section describes the
steps for converting a model to use external mode.

External mode is supported using the CAN Calibration Protocol block and
ASAP2 interface. The CAN Calibration Protocol block is used to communicate
with the target, download parameter updates, and upload signal information.
The ASAP2 interface is used to get information about where in the target
memory a parameter or signal lives.

Note You must configure the host-side CAN application channel. See
“Configuring the Host Vector CAN Application Channel” on page 2-11.

To prepare your model for external mode, follow these steps:

1 Add a CCP driver block.

2 Add a Switch External Mode Configuration Block (for ease of use; you can
also make changes manually).

2-9

2 Configuring Timing Parameters for CAN Blocks

3 Identify signals you want to tune, and associate them with
Simulink.Parameter objects with ExportedGlobal storage class. It is
important to set the data type and value of the Simulink.Parameter object.
See “Using Supported Objects and Data Types” on page 2-11.

4 Identify signals you want to log, and associate them with canlib.Signal
objects. It is important to set the data type of the canlib.Signal. See
“Using Supported Objects and Data Types” on page 2-11.

For information about visualizing logged signal data, see “Viewing and
Storing Signal Data” on page 2-13.

5 Load the Simulink.Parameter and canlib.Signal data objects into the
base workspace.

6 Configure the model for building by double-clicking the Switch External
Mode Configuration block. In the dialog box, select Building an
executable, and click OK.

7 Build the model, and download the executable to the target

8 After downloading the executable to the target, you can switch the model to
external mode by double-clicking the Switch External Mode Configuration
Block. In the dialog box that appears, select External Mode, and click OK.

9 You can now connect to the target using external mode by clicking the
Connect button.

10 If you have set up tunable parameters, you can now tune them. See
“Tuning Parameters” on page 2-12.

If you do not want to use the Switch External Mode Configuration block, you
can configure for building and then external mode manually. For instructions,
see “Manual Configuration For External Mode” on page 2-16.

See the following topics for more information:

• “Configuring the Host Vector CAN Application Channel” on page 2-11

• “Using Supported Objects and Data Types” on page 2-11

• “Tuning Parameters” on page 2-12

2-10

Parameter Tuning and Signal Logging

• “Viewing and Storing Signal Data” on page 2-13

• “Manual Configuration For External Mode” on page 2-16

• “Limitations” on page 2-17

Configuring the Host Vector CAN Application Channel
External mode expects that the host-side CAN connection is using the
'MATLAB 1' application channel. To configure the application channel used
by the Vector CAN drivers, enter the following at the MATLAB command line:

TargetsComms_VectorApplicationChannel.configureApplicationChannels

The Vector CAN Configuration tool appears. Use this tool to configure your
host-side CAN channel settings.

If you try to connect using an application channel other than 'MATLAB 1',
then you see the following warning in the command window:

Warning:
It was not possible to connect to the target using CCP.
An error occurred when issuing the CONNECT command.

Using Supported Objects and Data Types
Supported objects:

• Simulink.Parameter for parameter tuning

• canlib.Signal for signal logging

Supported data types:

• uint8, int8

• uint16, int16

• uint32, int32

• single

2-11

2 Configuring Timing Parameters for CAN Blocks

You need to define data objects for the signals and parameters of interest for
ASAP 2 file generation. For ease of use, create a MATLAB file to define the
data objects, so that you only have to set up the objects once.

To set up tunable parameters and signal logging:

1 Associate the parameters to be tuned with Simulink.Parameter objects
with ExportedGlobal storage class. It is important to set the data type
and value of the Simulink.Parameter object. See the following code for an
example of how to create such a Simulink.Parameter object for tuning:

stepSize = Simulink.Parameter;
stepSize.DataType = 'uint8';
stepSize.RTWInfo.StorageClass = 'ExportedGlobal';
stepSize.Value = 1;

2 Associate the signals to be logged with canlib.Signal objects. It is important
to set the data type of the canlib.Signal. The following code example shows
how to declare such a canlib.Signal object for logging:

counter = canlib.Signal;
counter.DataType = 'uint8';

3 Associate the data objects you defined in the MATLAB file with parameters
or signals in the model. For the previous code examples, you could set the
Constant value in a Source block to stepSize, and set a Signal name
to counter in the Signal Properties dialog box. Remember that stepSize
and counter are data objects defined in the code.

Tuning Parameters
To tune a parameter, follow these steps:

1 Set dataobject.value in the workspace while the model is running in
external mode. For example, to tune the parameter stepSize (that is, to
change its value) from 1 to 2, enter the following at the command line:

stepSize.value = 2

2-12

Parameter Tuning and Signal Logging

You see output similar to the following:

stepSize =

Simulink.Parameter (handle)
RTWInfo: [1x1 Simulink.ParamRTWInfo]

Description: ''
DataType: 'uint8'

Min: -Inf
Max: Inf

DocUnits: ''
Value: 2

Complexity: 'real'
Dimensions: [1 1]

2 Return to your model, and update the model (press Ctrl+D) to apply the
changed parameter.

Viewing and Storing Signal Data
To view the logged signals attach a supported scope type to the signal (see
“Limitations” on page 2-17 for supported scope types).

Select which signals you want to log by using the External Signal &
Triggering dialog box. Access the External Mode Control Panel from the Tools
menu, and click the Signal & Triggering button. By default, all displays
appear as selected to be logged, as shown in the following example. Edit
these settings if you do not want to log all displays. Individual displays can
be selected manually.

2-13

2 Configuring Timing Parameters for CAN Blocks

Storing signal data for further analysis. It is possible to store the logged
data for further analysis in MATLAB.

1 To use the Data Archiving feature of external mode, click Data Archiving
in the External Mode Control Panel. The External Data Archiving dialog
box appears.

2-14

Parameter Tuning and Signal Logging

a Select the check box Enable archiving

b Edit the Folder and Filename and any other desired settings.

c Close the dialog box.

2 Open the Scope parameters, and select the check box Save data to
workspace.

2-15

2 Configuring Timing Parameters for CAN Blocks

3 You may want to edit the Variable name in the edit box. The data that is
displayed on the scope at the end of the external mode session is available
in the workspace with this variable name.

The data that was previously displayed in the scope is stored in .mat files
as previously setup using Data Archiving.

For example, at the end of an external mode session, the following variable
and files could be available in the workspace and current folder:

• A variable ScopeData5 with the data currently displayed on the scope:

ScopeData5

ScopeData5 =

time: [56x1 double]
signals: [1x1 struct]

blockName: 'mpc555rt_ccp/Scope1'

• In the current folder, .mat files for the three previous Durations of
scope data:

ExternalMode_0.mat
ExternalMode_2.mat
ExternalMode_1.mat

Manual Configuration For External Mode
As an alternative to using the Switch External Mode Configuration block, you
can configure models manually for build and execution with external mode.

To configure a model to be built for external mode:

1 Select Inline parameters (under Optimization in the Configuration
Parameters dialog box). The Inline parameters option is required for
ASAP2 generation.

2 Select Normal simulation mode (in either the Simulation menu, or the
drop-down list in the toolbar).

2-16

Parameter Tuning and Signal Logging

3 Select ASAP2 as the Interface (under Real-Time Workshop, Interface,
in the Data Exchange pane, in the Configuration Parameters dialog box).

After you build the model, you can configure it for external mode execution:

1 Make sure Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). The Inline parameters option is
required for external mode.

2 Select External simulation mode (in either the Simulation menu, or
the drop-down list in the toolbar).

3 Select External mode as the Interface (under Real-Time Workshop,
Interface, in the Data Exchange pane, in the Configuration Parameters
dialog box).

Limitations
Multiple signal sinks (e.g. scopes) are not supported.

Only the following kinds of scopes are supported with External Mode Logging:

• Simulink Scope block

• Simulink Display block

• Viewer type: scope — To use this option, right-click a signal in the model,
and select Create & Connect Viewer > Simulink > Scope. The other
scope types listed there are not supported (e.g., floating scope).

Before connecting to external mode, you also need to right-click the signal,
and select Signal Properties. In the dialog box, select the Test point
check box, and click OK.

GRT is supported but only for parameter tuning.

It is not possible to log signals with sample rates in excess of 10 kHz.

Subsystem builds are not supported for external mode, only top-level builds
are supported.

2-17

2 Configuring Timing Parameters for CAN Blocks

Logging and tuning of nonscalars is not supported. It is possible to log
nonscalar signals by breaking the signal down into its scalar components. For
an example of how to do this signal deconstruction, see the CCP demo models,
which use a Demux and Signal Conversion block with contiguous copy.

Logging and tuning of complex numbers is not supported. It is possible to
work with complex numbers by breaking the complex number down into its
real and imaginary components. This breakdown can be performed using
the following blocks in the Simulink Math Operations library: Complex to
Real-Imag, Real-Imag to Complex, Magnitude-Angle to Complex, Complex
to Magnitude-Angle.

Using a Third Party Calibration Tool
Target Support Package allows an ASAP2 data definition file to be generated
during the code generation process. This file can be used by a third party tool
to access data from the real-time application while it is executing.

ASAP2 is a data definition standard by the Association for Standardization
of Automation and Measuring Systems (ASAM). ASAP2 is a standard
description for data measurement, calibration, and diagnostic systems.
Target Support Package software lets you export an ASAP2 file containing
information about your model during the code generation process.

Before you begin generating ASAP2 files with Target Support Package
software, you should read the “Generating an ASAP2 File” section of the
Real-Time Workshop documentation. That section describes how to define
the signal and parameter information required by the ASAP2 file generation
process.

Select the ASAP2 option before the build process as follows:

1 Select Simulation > Configuration Parameters.

The Configuration Parameters dialog box appears.

2 Select Interface (under Real-Time Workshop) in the tree.

3 Select the ASAP2 option from the Interface drop-down menu, in the Data
exchange frame.

2-18

Parameter Tuning and Signal Logging

4 Click Apply.

The build process creates an ASAM-compliant ASAP2 data definition file for
the generated C code.

• The standard Real-Time Workshop ASAP2 file generation does not
include the memory address attributes in the generated file. Instead,
it leaves a placeholder that must be replaced with the actual address by
postprocessing the generated file.

• The map file options in the template project need to be set up a certain way
for this procedure to work. If you have created your own template projects,
and you do not have the correct settings, you see the following instructions:

Warning: It was not possible to do ASAP2 processing on your
.map file.This is because your IDE project template is not
configured to generate a .map file in the correct format.
To generate a .map file in the correct format you need to
setup the following options in your IDE project template:
Generate section map should be checked on
Generate register map should be checked off
Generate symbol table should be checked on
Format list file into pages should be checked off
Generate summary should be checked off
Page width should be equal to 132 characters
Symbol colums should be 1
You can change these options via Project -> Project Options
-> Linker/Locator -> Map File -> Map File Format.

Target Support Package software performs this postprocessing for you. To
do this, it first extracts the memory address information from the map file
generated during the link process. Secondly, it replaces the placeholders in
the ASAP2 file with the actual memory addresses. This postprocessing is
performed automatically and requires no additional input from you.

2-19

2 Configuring Timing Parameters for CAN Blocks

2-20

3

Configuring Acquisition
Window Width for ADC
Blocks

• “What Is an Acquisition Window?” on page 3-2

• “Configuring ADC Parameters for Acquisition Window Width” on page 3-5

3 Configuring Acquisition Window Width for ADC Blocks

What Is an Acquisition Window?
ADC blocks take a signal from an analog source and measure it with a digital
device. The digital device does not measure in a continuous process, but in a
series of discrete measurements, close enough together to approximate the
source signal with the required accuracy, as shown in the following figure.

�������	
���� �
�
��������������

The digital measurement itself is not an instantaneous process, but is a
measurement window, where the signal is acquired and measured, as shown
below.

	�����
	
����

���������� ����������
����
�
�
��
�
����

Ideally, as soon as the measurement window is opened, the actual signal
coming in would be measured perfectly. In reality the signal does not reach
its full magnitude immediately. The measurement process can be modeled by

3-2

What Is an Acquisition Window?

a circuit similar to the one shown in the following figure for the ADC found on
the F2812 eZdsp

where the measurement circuit is characterized by a certain capacitance. In
the preceding figure, when the switch is closed, the measurement begins. In
this circuit, which is characterized by its capacitance, the signal received
is not in a form of a step function as shown by the ideal measurement, but
a ramp up to the true signal magnitude. The following figure shows what
happens to the signal when the sampler switch is closed and the signal is
received to be measured.

�������	
����
����
�
�
��
�
����
�
���

Because the signal acquisition is not instantaneous, it is very important to
set a wide enough acquisition window to allow the signal to ramp up to full
strength before the measurement is taken. If the window is too narrow,
the measurement is taken before the signal has reached its full magnitude,
resulting in erroneous data. If the window is too wide, the source signal
itself may change, and the sampling may be too infrequent to reflect the
actual value, also resulting in erroneous data. You must calculate the

3-3

3 Configuring Acquisition Window Width for ADC Blocks

necessary width of the acquisition window based on the circuit characteristics
of resistance and capacitance of your specific circuit. Then, using the ADC
parameters described in the following section, you can configure the necessary
acquisition window width.

3-4

Configuring ADC Parameters for Acquisition Window Width

Configuring ADC Parameters for Acquisition Window
Width

In this section...

“Accessing the ADC Parameters” on page 3-5

“Examples” on page 3-7

Accessing the ADC Parameters
The ADC parameters can be set from the Peripherals tab of the Target
Preferences block.

• You can set ACQ_PS — Acquisition Prescaler — to a value from 0 to 15.
To obtain the actual value, increment the setting by 1. This produces an
actual range from 1 to 16.

• You can set ADCLKPS — AD Clock Prescaler — to a value from 0 to 15.
To obtain the actual value, increment the setting by 1. This produces an
actual range from 1 to 16.

• You can set CPS— Clock Prescaler — to a value from 0 to 1. To obtain the
actual value, increment the setting by 1. This produces an actual range
from 1 to 2.

3-5

3 Configuring Acquisition Window Width for ADC Blocks

These three prescalers serve to reduce the speed of the clock and to set the
acquisition window width. The following diagram shows how these prescalers
are used.

3-6

Configuring ADC Parameters for Acquisition Window Width

������	
������
 !�"
������#
�
$
���%

&'	����
 �
����(���
(��
(�����
����#% ������	��

�����������

����
�������#
)�������*�"*��
)�������)��������

��	

��	

��	��
)��������������
��������#
)�������*�"*��
)�������)������+

��,-�	

��������
��
��
�����
��������#
�
����

��,-�	��
����
�
�
��
�����������

��
�����
�������*
������
�
�#���
��
���(�
��
�����
����

	��(��
&���
����#
(����

In the preceding diagram, the high speed peripheral clock frequency is
received and then divided by the ADCLKPS. The reduced clock frequency
is then further divided by CPS. The resulting frequency is the ADCCLK
signal. The value of ACQ_PS then determines how many ADCCLK ticks
comprise one S/H (sample and hold) period, or in other words, the length of
the acquisition window.

Examples
The following examples show how you can use ADC parameters to configure
the acquisition window width:

Example 1:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5MHz.

If ACQ_PS = 0 (which is a value of 1), then the sample/hold period is 1
ADCCLK tick, or .1333 microseconds.

3-7

3 Configuring Acquisition Window Width for ADC Blocks

Example 2:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5MHz.

If ACQ_PS = 15 (which is a value of 16), then the sample/hold period is 16
ADCCLK ticks, or 2.1333 microseconds.

Note HISPCLK is set automatically for the user, and it is not possible to
change the rate. For more information, see “High-Speed Peripheral Clock”
on page 1-11

3-8

4

Using the IQmath Library

• “About the IQmath Library” on page 4-2

• “Fixed-Point Numbers” on page 4-4

• “Building Models” on page 4-10

4 Using the IQmath Library

About the IQmath Library

In this section...

“Introduction” on page 4-2

“Common Characteristics” on page 4-3

“References” on page 4-3

Introduction
The C28x IQmath Library blocks perform processor-optimized fixed-point
mathematical operations. These blocks correspond to functions in the Texas
Instruments C28x IQmath Library, an assembly-code library for the TI C28x
family of digital signal processors.

Note The implementation of this library for the TI C28x processor produces
the same simulation and code-generation output as the TI version of this
library, but it does not use a global Q value, as does the TI version. The Q
format is dynamically adjusted based on the Q format of the input data.

The IQmath Library blocks generally input and output fixed-point data types
and use numbers in Q format. The C28x IQmath Library block reference
pages discuss the data types accepted and produced by each block in the
library. For more information, consult the “Fixed-Point Numbers” on page
4-4 and “Q Format Notation” on page 4-5 topics, as well as the Simulink®

Fixed Point™ product documentation, which includes more information on
fixed-point data types, scaling, and precision issues.

You can use IQmath Library blocks with some core Simulink blocks and
Simulink Fixed Point blocks to run simulations in Simulink models before
generating code. Once you develop your model, you can invoke Real-Time
Workshop software to generate equivalent code that is optimized to run on a
TI C28x DSP. During code generation, a call is made to the IQmath Library
for each IQmath Library block in your model to create target-optimized code.
To learn more about creating models that include IQmath Library blocks and
blocks from other blocksets, consult “Building Models” on page 4-10.

4-2

About the IQmath Library

Common Characteristics
The following characteristics are common to all IQmath Library blocks:

• Sample times are inherited from driving blocks.

• Blocks are single rate.

• Parameters are not tunable.

• All blocks support discrete sample times.

To learn more about characteristics particular to each block in the library,
see “C28x IQmath (tiiqmathlib)” on page 6-13 for links to the individual block
reference pages.

References
For detailed information on the IQmath library, see the user’s guide for the
C28x IQmath Library - A Virtual Floating Point Engine, Literature Number
SPRC087, available at the Texas Instruments website. The user’s guide
is included in the zip file download that also contains the IQmath library
(registration required).

4-3

4 Using the IQmath Library

Fixed-Point Numbers

In this section...

“Notation” on page 4-4

“Signed Fixed-Point Numbers” on page 4-5

“Q Format Notation” on page 4-5

Notation
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1s and 0s). How hardware components
or software functions interpret this sequence of 1s and 0s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below:

where

• bi is the ith binary digit.

• ws is the word size in bits.

• bws–1 is the location of the most significant (highest) bit (MSB).

• b0 is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of 4.

4-4

Fixed-Point Numbers

Note For Target Support Package, the results of fixed-point and integer
operations in MATLAB/Simulink match the results on the hardware target
down to the least significant bit (bit-trueness). The results of floating-point
operations in MATLAB/Simulink do not match those on the hardware
target, because the libraries used by the third-party compiler may be
different from those used by MATLAB/Simulink.

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation to one’s complement representation) followed by the
binary addition of a 1. For example, the two’s complement of 000101 is
111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the
LSB)

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such
as addition or subtraction, hardware uses the same logic circuits regardless of
the value of the scale factor. In essence, the logic circuits have no knowledge of
a binary point. They perform signed or unsigned integer arithmetic — as if the
binary point is to the right of b0. Therefore, you determine the binary point.

4-5

4 Using the IQmath Library

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• Q designates that the number is in Q format notation — the Texas
Instruments representation for signed fixed-point numbers.

• m is the number of bits used to designate the two’s complement integer
portion of the number.

• n is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is always designated as the sign bit.
Representing a signed fixed-point data type in Q format always requires
m+n+1 bits to account for the sign.

Note The range and resolution varies for different Q formats. For specific
details, see Section 3.2 in the Texas Instruments C28x Foundation Software,
IQmath Library Module User’s Guide.

When converting from Q format to floating-point format, the accuracy of the
conversion depends on the values and formats of the numbers. For example,
for single-precision floating-point numbers that use 24 bits, the resolution of
the corresponding 32-bit number cannot be achieved. The 24-bit number
approximates its value by truncating the lower end. For example:

32-bit integer 11110000 11001100 10101010 00001111
Single-precision float +1.1110000 11001100 10101010 x 231
Corresponding value 11110000 11001100 10101010 00000000

Example — Q.15
For example, a signed 16-bit number with n = 15 bits to the right of the
binary point is expressed as

4-6

Fixed-Point Numbers

Q0.15

in this notation. This is (1 sign bit) + (m = 0
integer bits) + (n = 15 fractional bits) = 16 bits total in the data type. In Q
format notation, the m = 0 is often implied, as in

Q.15

In Simulink Fixed Point software, this data type is expressed as

sfrac16

or

sfix16_En15

In Filter Design Toolbox™ software, this data type is expressed as

[16 15]

Example — Q1.30
Multiplying two Q0.15 numbers yields a product that is a signed 32-bit data
type with n = 30 bits to the right of the binary point. One bit is the designated
sign bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore, this number is expressed as

Q1.30

In Simulink Fixed Point software, this data type is expressed as

sfix32_En30

In Filter Design Toolbox software, this data type is expressed as

[32 30]

4-7

4 Using the IQmath Library

Example — Q-2.17
Consider a signed 16-bit number with a scaling of 2(-17). This requires n = 17
bits to the right of the binary point, meaning that the most significant bit
is a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two’s complement number 1011. When this number is
extended to 7 bits with sign extension, the number becomes 1111101 and the
value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total

Therefore, this number is expressed as

Q-2.17

In Simulink Fixed Point software, this data type is expressed as

sfix16_En17

In Filter Design Toolbox software, this data type is expressed as

[16 17]

Example — Q17.-2
Consider a signed 16-bit number with a scaling of 2^(2) or 4. This means that
the binary point is implied to be 2 bits to the right of the 16 bits, or that there
are n = -2 bits to the right of the binary point. One bit must be the sign bit,
thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16

Therefore, this number is expressed as

Q17.-2

In Simulink Fixed Point software, this data type is expressed as

sfix16_E2

4-8

Fixed-Point Numbers

In Filter Design Toolbox software, this data type is expressed as

[16 -2]

4-9

4 Using the IQmath Library

Building Models

In this section...

“Overview” on page 4-10

“Converting Data Types” on page 4-10

“Using Sources and Sinks” on page 4-11

“Choosing Blocks to Optimize Code” on page 4-11

“Double and Single-Precision Parameter Values” on page 4-11

Overview
You can use IQmath Library blocks in models along with certain core
Simulink, Simulink Fixed Point, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

Converting Data Types
As always, it is vital to make sure that any blocks you connect in a model
have compatible input and output data types. In most cases, IQmath Library
blocks handle only a limited number of specific data types. You can refer to
any block reference page in the alphabetical block reference for a discussion of
the data types that the block accepts and produces.

When you connect IQmath Library blocks and Simulink Fixed Point blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink Fixed Point block to match the data type of the IQmath Library
block. Many Simulink Fixed Point blocks allow you to set their data
type and scaling through inheritance from the driving block, or through
backpropagation from the next block. This can be a good way to set the data
type of a Simulink Fixed Point block to match a connected IQmath Library
block.

Some Signal Processing Blockset blocks and core Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to an IQmath Library block.

4-10

Building Models

Using Sources and Sinks
The IQmath Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or Simulink Fixed Point in your
models with IQmath Library blocks.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than
one blockset. For example, the IQmath Library and Simulink Fixed Point
software have a Multiply block. When you are building a model to run on
C2000 DSP, choosing the block from the IQmath Library always yields better
optimized code. You can use a similar block from another library if it gives
you functionality that the IQmath Library block does not support, but you
will generate code that is less optimized.

Double and Single-Precision Parameter Values
When you enter double-precision floating-point values for parameters in the
IQ Math blocks, the software converts them to single-precision values that
are compatible with the behavior on c28x processor. For example, with the
Ramp Generator block, the software converts the value of the Maximum
step angle parameter to a single-precision value.

4-11

4 Using the IQmath Library

4-12

5

Programming Flash
Memory

• “Introduction” on page 5-2

• “Installing TI Flash APIs” on page 5-3

• “Configuring the DSP Board Bootloader” on page 5-4

• “Configuring the Software for Automatic Flash Programming” on page 5-5

• “Selectively Erase, Program, or Verify Specific Flash Sectors” on page 5-7

• “Placing Additional Code or Data on Unused Flash Sectors” on page 5-8

5 Programming Flash Memory

Introduction
The Target Support Package software includes a feature for programming
Flash memory on the DSP target. You can configure this feature to
automatically program Flash memory when you build and execute models for
DSP boards. You can also use the Flash programming feature to selectively
erase, program, or verify specific sectors of Flash memory.

Note Reprogramming Flash memory thousands of times may deplete
its ability to hold data. Consult the manufacturer’s documentation for
specifications.

Requirements:

• A F2812, F2808, or F28335 eZdsp board

• A working model that includes a target preferences block for “Stand alone
code using Flash Memory”

• The TI Flash API for your specific target

5-2

Installing TI Flash APIs

Installing TI Flash APIs
1 Visit the Texas Instruments website and download the TI Flash API
installation software for your target:

• F281x: http://focus.ti.com/docs/toolsw/folders/print/sprc125.html

• F280x: http://focus.ti.com/docs/toolsw/folders/print/sprc193.html

• F2802x: http://focus.ti.com/docs/toolsw/folders/print/sprc848.html

• F2804x: http://focus.ti.com/docs/toolsw/folders/print/sprc325.html

• F2823x: http://focus.ti.com/docs/toolsw/folders/print/sprc665.html

• F2833x: http://focus.ti.com/docs/toolsw/folders/print/sprc539.html

2 Start the TI Flash API installation software (.exe) contained in the ZIP file.

3 During installation, use the default folder location for Location to Save
Files.

Otherwise, each time you create a model, you must configure Specify API
Location, located under the Peripherals tab of the Target Preferences
block.

4 Complete the installation process.

5-3

http://focus.ti.com/docs/toolsw/folders/print/sprc125.html
http://focus.ti.com/docs/toolsw/folders/print/sprc193.html
http://focus.ti.com/docs/toolsw/folders/print/sprc848.html
http://focus.ti.com/docs/toolsw/folders/print/sprc325.html
http://focus.ti.com/docs/toolsw/folders/print/sprc665.html
http://focus.ti.com/docs/toolsw/folders/print/sprc539.html

5 Programming Flash Memory

Configuring the DSP Board Bootloader
Configure the bootloader switch or jumper on the DSP board so that, upon
startup, the DSP board executes the program from Flash memory. Consult
the manufacturer’s hardware documentation to identify the specific switch
and settings.

Typically, you can enable the bootloader switch or jumper by moving it from
the factory default position (Flash disabled) to the opposite position (enabled).
For example:

• On the F2812 eZdsp, change jumper JP7 from the factory default setting.

• On the F2808 eZdsp, change switches 1 and 3 on bank SW1 from the
factory default settings.

• On F28335 eZdsp, change switch 3 on bank SW1 from the factory default
setting.

5-4

Configuring the Software for Automatic Flash Programming

Configuring the Software for Automatic Flash
Programming

Configure Target Support Package software to program Flash memory on the
target board when you build and execute a model.

1 On your keyboard, press Ctrl+E to open the Real-Time Workshop
Configuration Parameters dialog box, select Real Time Workshop
and Embedded IDE Link, and confirm Build Action is set to
Build_and_execute.

2 Open the target preferences block in your model, select the Peripherals
tab, and then select Flash_loader.

3 Set Enable flash programmer to Erase, Program, Verify.

5-5

5 Programming Flash Memory

4 Click OK to save and close the new configuration.

When you build the model, the software automatically erases, programs, and
verifies Flash memory. When the DSP board restarts, it loads and executes
the program from Flash memory.

5-6

Selectively Erase, Program, or Verify Specific Flash Sectors

Selectively Erase, Program, or Verify Specific Flash Sectors
You can manually erase, program, and verify specific sectors of Flash memory:

1 Open the target preferences block in your model, and select the
Peripherals tab.

2 Select Flash_loader from the Peripherals list.

3 Set Enable flash programmer to erase, program, or verify flash.

4 (Optional) To protect specific Flash sectors:

a Disable Detect Flash sectors to erase from COFF file.

b Deselect the flash sectors you want to protect.

5 Click Execute. The software performs the action you specified upon the
unprotected flash sectors.

Note Erase Flash sectors before programming them.

5-7

5 Programming Flash Memory

Placing Additional Code or Data on Unused Flash Sectors
To place additional code or data on unused Flash sectors:

1 Determine the address and length of the individual Flash sectors. You may
need to refer to the manufacturer’s specifications.

2 Determine the size of the primary C code program and the number of Flash
sectors it occupies.

3 Determine the size of the additional code or data and the number of Flash
sectors it will occupy.

4 Under the target preferencesMemory tab, click Add to create two or more
new memory banks; one for the primary C code program (e.g., FLASH_AB)
and one or more for the additional code or data (e.g., FLASH_CD). The
address and length of each memory bank must align with those of the flash
sectors.

5-8

Placing Additional Code or Data on Unused Flash Sectors

5 Under the Sections tab, underDefault sections, select .text. Then, under
Placement, select the new memory bank (e.g., FLASH_AB) you created
for the primary C code program. The next time you program the Flash
memory, the software places the .text C code file in the new memory bank.

6 Similarly, select items from the Default sections or Custom sections
list, and place them in the new memory banks (e.g., FLASH_CD) for the
previously unoccupied Flash sectors.

5-9

5 Programming Flash Memory

5-10

6

Block Reference

C280x (c280xlib) (p. 6-2) Blocks that support C280x boards

C2802x (c2802xlib) (p. 6-4) Blocks that support C2802x boards

C2803x (c2803xlib) (p. 6-6) Blocks that support C2803x boards

C281x (c281xlib) (p. 6-8) Blocks that support C281x boards

C28x3x (c2833xlib) (p. 6-10) Blocks that support C28x3x boards

C28x DMC (c28xdmclib) (p. 6-12) Blocks that represent the
functionality of the TI C28x
DMC Library

C28x IQmath (tiiqmathlib) (p. 6-13) Blocks that represent the
functionality of the TI IQmath
Library

Host SCI Blocks (c2000scilib)
(p. 6-14)

Host SCI blocks

RTDX Instrumentation (rtdxBlocks)
(p. 6-15)

RTDX blocks for C2000 boards

Target Preferences (c2000tgtpreflib)
(p. 6-16)

Configure models for code generation
and targeting

6 Block Reference

C280x (c280xlib)

C280x/C2802x/C2803x/C28x3x
eCAP

Receive and log capture input pin
transitions or configure auxiliary
pulse width modulator

C280x/C2802x/C2803x/C28x3x
GPIO Digital Input

Configure general-purpose input
pins

C280x/C2802x/C2803x/C28x3x
GPIO Digital Output

Configure general-purpose
input/output pins as digital
outputs

C280x/C2802x/C2803x/C28x3x I2C
Receive

Configure inter-integrated circuit
(I2C) module to receive data from
I2C bus

C280x/C2802x/C2803x/C28x3x I2C
Transmit

Configure inter-integrated circuit
(I2C) module to transmit data to I2C
bus

C280x/C2802x/C2803x/C28x3x SCI
Receive

Receive data on target via serial
communications interface (SCI) from
host

C280x/C2802x/C2803x/C28x3x SCI
Transmit

Transmit data from target via serial
communications interface (SCI) to
host

C280x/C2802x/C2803x/C28x3x
Software Interrupt Trigger

Generate software triggered
nonmaskable interrupt

C280x/C2802x/C2803x/C28x3x SPI
Receive

Receive data via serial peripheral
interface (SPI) on target

C280x/C2802x/C2803x/C28x3x SPI
Transmit

Transmit data via serial peripheral
interface (SPI) to host

C280x/C2803x/C28x3x eCAN
Receive

Enhanced Control Area Network
receive mailbox

C280x/C2803x/C28x3x eCAN
Transmit

Enhanced Control Area Network
transmit mailbox

6-2

C280x (c280xlib)

C280x/C2803x/C28x3x ePWM Configure Event Manager to
generate Enhanced Pulse Width
Modulator (ePWM) waveforms

C280x/C2803x/C28x3x eQEP Quadrature encoder pulse circuit

C280x/C28x3x ADC Analog-to-Digital Converter (ADC)

C28x Watchdog Configure counter reset source of
DSP Watchdog module

CAN Calibration Protocol Implement CAN Calibration Protocol
(CCP) standard

From Memory Retrieve data from target memory

To Memory Write data to target memory

6-3

6 Block Reference

C2802x (c2802xlib)

C2802x/C2803x ADC Configure ADC to sample analog
pins and output digital data

C2802x/C2803x AnalogIO Input Configure pin, sample time, and
data type for analog input

C2802x/C2803x AnalogIO Output Configure Analog IO to output
analog signals on specific pins

C2802x/C2803x COMP Compare two input voltages on
comparator pins

C2802x/C2803x ePWM Generate Enhanced Pulse Width
Modulator (ePWM) waveforms

C280x/C2802x/C2803x/C28x3x
eCAP

Receive and log capture input pin
transitions or configure auxiliary
pulse width modulator

C280x/C2802x/C2803x/C28x3x
GPIO Digital Input

Configure general-purpose input
pins

C280x/C2802x/C2803x/C28x3x
GPIO Digital Output

Configure general-purpose
input/output pins as digital
outputs

C280x/C2802x/C2803x/C28x3x I2C
Receive

Configure inter-integrated circuit
(I2C) module to receive data from
I2C bus

C280x/C2802x/C2803x/C28x3x I2C
Transmit

Configure inter-integrated circuit
(I2C) module to transmit data to I2C
bus

C280x/C2802x/C2803x/C28x3x SCI
Receive

Receive data on target via serial
communications interface (SCI) from
host

C280x/C2802x/C2803x/C28x3x SCI
Transmit

Transmit data from target via serial
communications interface (SCI) to
host

C280x/C2802x/C2803x/C28x3x
Software Interrupt Trigger

Generate software triggered
nonmaskable interrupt

6-4

C2802x (c2802xlib)

C280x/C2802x/C2803x/C28x3x SPI
Receive

Receive data via serial peripheral
interface (SPI) on target

C280x/C2802x/C2803x/C28x3x SPI
Transmit

Transmit data via serial peripheral
interface (SPI) to host

C28x Watchdog Configure counter reset source of
DSP Watchdog module

6-5

6 Block Reference

C2803x (c2803xlib)

C2802x/C2803x ADC Configure ADC to sample analog
pins and output digital data

C2802x/C2803x AnalogIO Input Configure pin, sample time, and
data type for analog input

C2802x/C2803x AnalogIO Output Configure Analog IO to output
analog signals on specific pins

C2802x/C2803x COMP Compare two input voltages on
comparator pins

C2802x/C2803x ePWM Generate Enhanced Pulse Width
Modulator (ePWM) waveforms

C280x/C2802x/C2803x/C28x3x
eCAP

Receive and log capture input pin
transitions or configure auxiliary
pulse width modulator

C280x/C2802x/C2803x/C28x3x
GPIO Digital Input

Configure general-purpose input
pins

C280x/C2802x/C2803x/C28x3x
GPIO Digital Output

Configure general-purpose
input/output pins as digital
outputs

C280x/C2802x/C2803x/C28x3x I2C
Receive

Configure inter-integrated circuit
(I2C) module to receive data from
I2C bus

C280x/C2802x/C2803x/C28x3x I2C
Transmit

Configure inter-integrated circuit
(I2C) module to transmit data to I2C
bus

C280x/C2802x/C2803x/C28x3x SCI
Receive

Receive data on target via serial
communications interface (SCI) from
host

C280x/C2802x/C2803x/C28x3x SCI
Transmit

Transmit data from target via serial
communications interface (SCI) to
host

C280x/C2802x/C2803x/C28x3x
Software Interrupt Trigger

Generate software triggered
nonmaskable interrupt

6-6

C2803x (c2803xlib)

C280x/C2802x/C2803x/C28x3x SPI
Receive

Receive data via serial peripheral
interface (SPI) on target

C280x/C2802x/C2803x/C28x3x SPI
Transmit

Transmit data via serial peripheral
interface (SPI) to host

C280x/C2803x/C28x3x eCAN
Receive

Enhanced Control Area Network
receive mailbox

C280x/C2803x/C28x3x eCAN
Transmit

Enhanced Control Area Network
transmit mailbox

C280x/C2803x/C28x3x eQEP Quadrature encoder pulse circuit

C28x Watchdog Configure counter reset source of
DSP Watchdog module

CAN Calibration Protocol Implement CAN Calibration Protocol
(CCP) standard

6-7

6 Block Reference

C281x (c281xlib)

C281x ADC Analog-to-digital converter (ADC)

C281x CAP Receive and log capture input pin
transitions

C281x eCAN Receive Enhanced Control Area Network
receive mailbox

C281x eCAN Transmit Enhanced Control Area Network
transmit mailbox

C281x GPIO Digital Input General-purpose I/O pins for digital
input

C281x GPIO Digital Output General-purpose I/O pins for digital
output

C281x PWM Pulse width modulators (PWMs)

C281x QEP Quadrature encoder pulse circuit

C281x SCI Receive Receive data on target via serial
communications interface (SCI) from
host

C281x SCI Transmit Transmit data from target via serial
communications interface (SCI) to
host

C281x Software Interrupt Trigger Generate software triggered
nonmaskable interrupt

C281x SPI Receive Receive data via serial peripheral
interface on target

C281x SPI Transmit Transmit data via serial peripheral
interface (SPI) to host

C281x Timer Configure general-purpose timer in
Event Manager module

C28x Watchdog Configure counter reset source of
DSP Watchdog module

6-8

C281x (c281xlib)

CAN Calibration Protocol Implement CAN Calibration Protocol
(CCP) standard

From Memory Retrieve data from target memory

To Memory Write data to target memory

6-9

6 Block Reference

C28x3x (c2833xlib)

C280x/C2802x/C2803x/C28x3x
eCAP

Receive and log capture input pin
transitions or configure auxiliary
pulse width modulator

C280x/C2802x/C2803x/C28x3x
GPIO Digital Input

Configure general-purpose input
pins

C280x/C2802x/C2803x/C28x3x
GPIO Digital Output

Configure general-purpose
input/output pins as digital
outputs

C280x/C2802x/C2803x/C28x3x I2C
Receive

Configure inter-integrated circuit
(I2C) module to receive data from
I2C bus

C280x/C2802x/C2803x/C28x3x I2C
Transmit

Configure inter-integrated circuit
(I2C) module to transmit data to I2C
bus

C280x/C2802x/C2803x/C28x3x SCI
Receive

Receive data on target via serial
communications interface (SCI) from
host

C280x/C2802x/C2803x/C28x3x SCI
Transmit

Transmit data from target via serial
communications interface (SCI) to
host

C280x/C2802x/C2803x/C28x3x
Software Interrupt Trigger

Generate software triggered
nonmaskable interrupt

C280x/C2802x/C2803x/C28x3x SPI
Receive

Receive data via serial peripheral
interface (SPI) on target

C280x/C2802x/C2803x/C28x3x SPI
Transmit

Transmit data via serial peripheral
interface (SPI) to host

C280x/C2803x/C28x3x eCAN
Receive

Enhanced Control Area Network
receive mailbox

C280x/C2803x/C28x3x eCAN
Transmit

Enhanced Control Area Network
transmit mailbox

6-10

C28x3x (c2833xlib)

C280x/C2803x/C28x3x ePWM Configure Event Manager to
generate Enhanced Pulse Width
Modulator (ePWM) waveforms

C280x/C2803x/C28x3x eQEP Quadrature encoder pulse circuit

C280x/C28x3x ADC Analog-to-Digital Converter (ADC)

C28x Watchdog Configure counter reset source of
DSP Watchdog module

CAN Calibration Protocol Implement CAN Calibration Protocol
(CCP) standard

From Memory Retrieve data from target memory

6-11

6 Block Reference

C28x DMC (c28xdmclib)

Clarke Transformation Convert balanced three-phase
quantities to balanced two-phase
quadrature quantities

Inverse Park Transformation Convert rotating reference frame
vectors to two-phase stationary
reference frame

Park Transformation Convert two-phase stationary
system vectors to rotating system
vectors

PID Controller Digital PID controller

Ramp Control Create ramp-up and ramp-down
function

Ramp Generator Generate ramp output

Space Vector Generator Duty ratios for stator reference
voltage

Speed Measurement Calculate motor speed

6-12

C28x IQmath (tiiqmathlib)

C28x IQmath (tiiqmathlib)

Absolute IQN Absolute value

Arctangent IQN Four-quadrant arc tangent

Division IQN Divide IQ numbers

Float to IQN Convert floating-point number to IQ
number

Fractional part IQN Fractional part of IQ number

Fractional part IQN x int32 Fractional part of result of
multiplying IQ number and long
integer

Integer part IQN Integer part of IQ number

Integer part IQN x int32 Integer part of result of multiplying
IQ number and long integer

IQN to Float Convert IQ number to floating-point
number

IQN x int32 Multiply IQ number with long
integer

IQN x IQN Multiply IQ numbers with same Q
format

IQN1 to IQN2 Convert IQ number to different Q
format

IQN1 x IQN2 Multiply IQ numbers with different
Q formats

Magnitude IQN Magnitude of two orthogonal IQ
numbers

Saturate IQN Saturate IQ number

Square Root IQN Square root or inverse square root
of IQ number

Trig Fcn IQN Sine, cosine, or arc tangent of IQ
number

6-13

6 Block Reference

Host SCI Blocks (c2000scilib)

SCI Receive Configure host-side serial
communications interface to
receive data from serial port

SCI Setup Configure COM ports for host-side
SCI Transmit and Receive blocks

SCI Transmit Configure host-side serial
communications interface to
transmit data to serial port

6-14

RTDX Instrumentation (rtdxBlocks)

RTDX Instrumentation (rtdxBlocks)
From RTDX Add RTDX™ communication

channel for target to receive data
from host

To RTDX Add RTDX communication channel
to send data from target to host

6-15

6 Block Reference

Target Preferences (c2000tgtpreflib)
For information about any of the Target Preferences/Custom Board blocks for
Texas Instruments’ processors, see the following topic:

Target Preferences/Custom Board Configure model for Texas
Instruments processor.

6-16

7

Blocks — Alphabetical List

Absolute IQN

Purpose Absolute value

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block computes the absolute value of an IQ number input. The
output is also an IQ number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Arctangent IQN, Division IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x
int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x
IQN2, Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-2

Arctangent IQN

Purpose Four-quadrant arc tangent

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description The Arctangent IQN block computes the four-quadrant arc tangent of
the IQ number inputs and produces IQ number output.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

Function
Type of arc tangent to calculate:

• atan2— Compute the four-quadrant arc tangent with output
in radians with values from -pi to +pi.

• atan2PU — Compute the four-quadrant arc tangent
per unit. If atan2(B,A) is greater than or equal to 0,
atan2PU(B,A) = atan2(B,A)/2*pi. Otherwise, atan2PU(B,A)

7-3

Arctangent IQN

= atan2(B,A)/2*pi+1. The output is in per-unit radians with
values from 0 to 2*pi radians.

Note The order of the inputs to the Arctangent IQN block correspond
to the Texas Instruments convention, with argument ’A’ at the top and
’B’ at bottom.

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Division IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x
int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x
IQN2, Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-4

C280x/C28x3x ADC

Purpose Analog-to-Digital Converter (ADC)

Library “C280x (c280xlib)” on page 6-2 and “C28x3x (c2833xlib)” on page 6-10

Description The C280x/C28x3x ADC block configures the C280x/C28x3x ADC to
perform analog-to-digital conversion of signals connected to the selected
ADC input pins. The ADC block outputs digital values representing
the analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices. With the C28x3x,
you can configure the ADC to use the processor’s DMA module to move
data directly to memory without using the CPU. This frees the CPU to
perform other tasks and increases overall system performance.

Output

The output of the C280x/C28x3x ADC is a vector of uint16 values. The
output values are in the range 0 to 4095 because the C280x/C28x3x
ADC is 12-bit converter.

Modes

The C280x/C28x3x ADC block supports ADC operation in dual and
cascaded modes. In dual mode, either module A or module B can be
used for the ADC block, and two ADC blocks are allowed in the model.
In cascaded mode, both module A and module B are used for a single
ADC block.

7-5

C280x/C28x3x ADC

Dialog
Box

ADC Control Pane

Module
Specifies which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0
through ADCINA7).

• B — Displays the ADC channels in module B (ADCINB0
through ADCINB7).

• A and B — Displays the ADC channels in both modules A
and B (ADCINA0 through ADCINA7 and ADCINB0 through
ADCINB7).

7-6

C280x/C28x3x ADC

Conversion mode
Type of sampling to use for the signals:

• Sequential— Samples the selected channels sequentially.

• Simultaneous — Samples the corresponding channels of
modules A and B at the same time.

Start of conversion
Type of signal that triggers conversions to begin:

• Software — Signal from software. Conversion values are
updated at each sample time.

• ePWMxA / ePWMxB / ePWMxA_ePWMxB — Start of conversion is
controlled by user-defined PWM events.

• XINT2_ADCSOC — Start of conversion is controlled by the
XINT2_ADCSOC external signal pin.

The choices available in Start of conversion depend on the
Module setting. The following table summarizes the available
choices. For each set of Start of conversion choices, the default
is given first.

Module
Setting

Start of Conversion Choices

A Software, ePWMxA, XINT2_ADCSOC

B ePWMxB, Software

A and B Software, ePWMxA, ePWMxB, ePWMxA_ePWMxB,
XINT2_ADCSOC

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-10 for more information on timing. To
execute this block asynchronously, set Sample Time to -1, check
the Post interrupt at the end of conversion box, and refer to

7-7

C280x/C28x3x ADC

“Asynchronous Interrupt Processing” on page 1-11 for a discussion
of block placement and other necessary settings.

To set different sample times for different groups of ADC
channels, you must add separate C280x/C28x3x ADC blocks to
your model and set the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Select this check box to post an asynchronous interrupt at the end
of each conversion. The interrupt is always posted at the end of
conversion. To execute this block asynchronously, set Sample
Time to -1, and refer to “Asynchronous Interrupt Processing” on
page 1-11 for a discussion of block placement and other necessary
settings.

Use DMA (with C28x3x)
Enable the Direct Memory Access (DMA) to transfer data directly
from the ADC to memory, bypassing the CPU and improving
overall system performance. This feature is only valid with a
C28x3x target.

When enabled, this setting applies the following settings to the
channel specified by the DMA Channel parameter. Disable the
corresponding channel in the Target Preferences block >
Peripherals > DMA_ch#. Modifications to Target Preferences
block > Peripherals > DMA_ch# do not apply or override the
following settings:

• Enable DMA channel: Enabled for channel specified by the
ADC block DMA Channel parameter.

• Data size: 16 bit

• Interrupt source: If the ADC block Module is A or A and B,
Interrupt source is SEQ1INT. If the ADC block Module is B,
Interrupt source is SEQ2INT.

7-8

C280x/C28x3x ADC

• Generate interrupt: Generate interrupt at end of
transfer

• Size

— Burst: The value assigned to Burst equals the ADC block
Number of conversions (NOC) multiplied by a value for
the ADC block Conversion mode (CVM). To summarize,
Burst = NOC * CVM.

If Conversion mode is Sequential, CVM = 1. If
Conversion mode is Simultaneous, CVM = 2.

For example, Burst is 6 when NOC is 3 and CVM is 2.

— Transfer: 1

— SRC wrap: 65536

— DST wrap: 65536

• Source

— Begin address: The value of Begin address is 0xB00 if
the ADC blockModule is A or A and B. The value of Begin
address is 0xB08 if the ADC block Module is B.

— Burst step: 1

— Transfer step: 0

— Wrap step: 0

• Destination

— Begin address: The value of Begin address is the
ADC buffer address minus the ADC block Number of
conversions.

If the target is F28232 or F28332, the ADC buffer address is
0xDFFC (57340). For other C28x3x targets, the ADC buffer
address is 0xFFFC (65532).

7-9

C280x/C28x3x ADC

For example, with a F28232 target, the Begin address is
0xDFF9 (57337) because the ADC buffer address, 57340
(0xDFFC), minus 3 conversions equals 57337 (0xDFF9).

— Burst step: 1

— Transfer step: 1

— Wrap step: 0

• Mode

— Enable one shot mode: disabled

— Sync enable: disabled

— Enable continuous mode: enabled

— Enable DST sync mode: disabled

— Set channel 1 to highest priority: disabled

— Enable overflow interrupt: disabled

For more information, consult TMS320x2833x, 2823x Direct
Memory Access (DMA) Module Reference Guide, Literature
Number: SPRUFB8A, available at the Texas Instruments Web
site.

DMA Channel
When the Use DMA parameter is enabled, select a channel for
the DMA module to use for data transfers. To prevent channel
conflicts, the same channel number must remain disabled in the
F28335 Target Preferences block, otherwise the software will
generate an error message.

7-10

C280x/C28x3x ADC

Input Channels Pane

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the

7-11

C280x/C28x3x ADC

block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also C280x/C2803x/C28x3x ePWM, C280x/C2802x/C2803x/C28x3x
Hardware Interrupt, “Configuring Acquisition Window Width for ADC
Blocks”

7-12

CAN Calibration Protocol

Purpose Implement CAN Calibration Protocol (CCP) standard

Library “C280x (c280xlib)” on page 6-2, “C2803x (c2803xlib)” on page 6-6,
“C281x (c281xlib)” on page 6-8, and “C28x3x (c2833xlib)” on page 6-10

Description The CAN Calibration Protocol block provides an implementation of a
subset of the CAN Calibration Protocol (CCP) Version 2.1. CCP is a
protocol for communicating between the target processor and the host
machine over CAN. In particular, a calibration tool (see “Compatibility
with Calibration Packages” on page 7-18) running on the host can
communicate with the target, allowing remote signal monitoring and
parameter tuning.

This block processes a Command Receive Object (CRO) and outputs
the resulting Data Transmission Object (DTO) and Data Acquisition
(DAQ) messages.

For more information on CCP, refer to ASAM Standards: ASAM MCD:
MCD 1a on the Association for Standardization of Automation and
Measuring Systems (ASAM) Web site at http://www.asam.de.

Using the DAQ Output

Note The CCP Data Acquisition (DAQ) List mode of operation is only
supported with Real-Time Workshop Embedded Coder. If Embedded
Coder is not available then custom storage classes canlib.signal are
ignored during code generation: this means that the CCP DAQ Lists
mode of operation cannot be used.

You can use the CCP Polling mode of operation with or without
Real-Time Workshop Embedded Coder.

The DAQ output is the output for any CCP Data Acquisition (DAQ) lists
that have been set up. You can use the ASAP2 file generation feature of
the Real-Time (RT) target to

7-13

http://www.asam.de

CAN Calibration Protocol

• Set up signals to be transmitted using CCP DAQ lists.

• Assign signals in your model to a CCP event channel automatically
(see “Generating an ASAP2 File”).

Once these signals are set up, event channels then periodically fire
events that trigger the transmission of DAQ data to the host. When this
occurs, CAN messages with the appropriate CCP/DAQ data appear on
the DAQ output, along with an associated function call trigger.

The calibration tool (see “Compatibility with Calibration Packages” on
page 7-18) must use CCP commands to assign an event channel and
data to the available DAQ lists, and interpret the synchronous response.

Using DAQ lists for signal monitoring has the following advantages
over the polling method:

• There is no need for the host to poll for the data. Network traffic is
halved.

• The data is transmitted at the correct update rate for the signal.
Therefore, there is no unnecessary network traffic generated.

• Data is guaranteed to be consistent. The transmission takes
place after the signals have been updated, so there is no risk of
interruptions while sampling the signal.

Note Target Support Package software does not currently support
event channel prescalers.

7-14

CAN Calibration Protocol

Dialog
Box

CCP station address (16–bit integer)
The station address of the target. The station address is
interpreted as a uint16. It is used to distinguish between
different targets. By assigning unique station addresses to targets
sharing the same CAN bus, it is possible for a single host to
communicate with multiple targets.

CAN module
If your processor has more than one module, select the module
this block configures.

7-15

CAN Calibration Protocol

CAN message identifier (CRO)
Specify the CAN message identifier for the Command Receive
Object (CRO) message you want to process.

CAN message type (CRO)
The incoming message type. Select either Standard(11-bit
identifier) or Extended(29-bit identifier).

CAN message identifier (DTO/DAQ)
The message identifier is the CAN message ID used for Data
Transmission Object (DTO) and Data Acquisition (DAQ) message
outputs.

CAN message type (DTO/DAQ)
The message type to be transmitted by the DTO and DAQ
outputs. Select either Standard(11-bit identifier) or
Extended(29-bit identifier).

Total Number of Object Descriptor Tables (ODTs)
The default number of Object Descriptor Tables (ODTs) is 8.
These ODTs are shared equally between all available DAQ lists.
You can choose a value between 0 and 254, depending on how
many signals you log simultaneously. You must make sure you
allocate at least 1 ODT per DAQ list, or your build will fail. The
calibration tool will give an error message if there are too few
ODTs for the number of signals you specify for monitoring. Be
aware that too many ODTs can make the sample time overrun.
If you choose more than the maximum number of ODTs (254),
the build will fail.

A single ODT uses 56 bytes of memory. Using all 254 ODTs would
require over 14 KB of memory, a large proportion of the available
memory on the target. To conserve memory on the target, the
default number is low, allowing DAQ list signal monitoring with
reduced memory overhead and processing power.

As an example, if you have five different rates in a model, and
you are using three rates for DAQ, then this will create three
DAQ lists and you must make sure you have at least three ODTs.

7-16

CAN Calibration Protocol

ODTs are shared equally among DAQ lists and, therefore, you will
end up with one ODT per DAQ list. With less than three ODTs,
you get zero ODTs per DAQ list and the behavior is undefined.

Taking this example further, say you have three DAQ lists with
one ODT each, and start trying to monitor signals in a calibration
tool. If you try to assign too many signals to a particular DAQ list
(that is, signals requiring more space than seven bytes (one ODT)
in this case), then the calibration tool will report this as an error.

CRO sample time
The sample time for CRO messages.

Supported CCP Commands

The following CCP commands are supported by the CAN Calibration
Protocol block:

• CONNECT

• DISCONNECT

• DNLOAD

• DNLOAD_6

• EXCHANGE_ID

• GET_CCP_VERSION

• GET_DAQ_SIZE

• GET_S_STATUS

• SET_DAQ_PTR

• SET_MTA

• SET_S_STATUS

• SHORT_UP

• START_STOP

• START_STOP_ALL

7-17

CAN Calibration Protocol

• TEST

• UPLOAD

• WRITE_DAQ

Compatibility with Calibration Packages

The above commands support

• Synchronous signal monitoring via calibration packages that use
DAQ lists

• Asynchronous signal monitoring via calibration packages that poll
the target

• Asynchronous parameter tuning via CCP memory programming

This CCP implementation has been tested successfully with the
Vector-Informatik CANape calibration package running in both DAQ
list and polling mode, and with the Accurate Technologies, Inc.,
Vision, calibration package running in DAQ list mode. (Accurate
Technologies, Inc., Vision does not support the polling mechanism for
signal monitoring).

7-18

C280x/C2803x/C28x3x eCAN Receive

Purpose Enhanced Control Area Network receive mailbox

Library “C280x (c280xlib)” on page 6-2, “C2803x (c2803xlib)” on page 6-6, and
“C28x3x (c2833xlib)” on page 6-10

Description The C280x/C2803x/C28x3x enhanced Control Area Network (eCAN)
Receive block generates source code for receiving eCAN messages
through an eCAN mailbox. The eCAN modules on the DSP chip provide
serial communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x/C2803x/C28x3x supports eCAN data
frames in standard or extended format.

The eCAN Receive block has up to two and, optionally, three output
ports.

• The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

• The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
The length of the vector is always 8 bytes. The message data port will
always output data. When the block is used in polling mode, if there
is no new message created between the consecutive executions of the
block, then the old message, or the existing message, is repeated.

• The third output port is optional and appears only if Output
message length is selected.

7-19

C280x/C2803x/C28x3x eCAN Receive

Dialog
Box

Module
Determines which of the two eCAN modules is being configured by
this instance of the C280x/C28x3x eCAN Receive block. Options
are eCAN_A and eCAN_B.

Mailbox number
Sets the value of the mailbox number register (MBNR). For
standard CAN controller (SCC) mode, enter a unique number
from 0 to 15. For high-end CAN controller (HECC) mode enter a
unique number from 0 to 31 . In SCC mode, transmissions from

7-20

C280x/C2803x/C28x3x eCAN Receive

the mailbox with the highest number have the highest priority. In
HECC mode, the mailbox number only determines priority if the
Transmit priority level (TPL) of two mailboxes is equal.

Message identifier
Sets the value of the message identifier register (MID). The
message identifier is 11 bits long for standard frame size or 29 bits
long for extended frame size in decimal, binary, or hex format.
For the binary and hex formats, use bin2dec(' ') or hex2dec('
'), respectively, to convert the entry.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if
a new message has been received. A new message causes a
function call to be emitted from the mailbox. If you want to
update the message output only when a new message arrives,
then the block needs to be executed asynchronously. To execute
this block asynchronously, set Sample Time to -1, check the
Post interrupt when message is received box, and refer to
“Asynchronous Interrupt Processing” on page 1-11 for a discussion
of block placement and other necessary settings.

Note For information about setting the timing parameters of
the CAN module, see “Configuring Timing Parameters for CAN
Blocks”.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 2

7-21

C280x/C2803x/C28x3x eCAN Receive

elements) data are allowed. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes,

data_buffer[0] = 0x21
data_buffer[1] = 0x43

the uint16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Select this check box to post an asynchronous interrupt when a
message is received.

References For detailed information on the eCAN module, see TMS320x281x, 280x
Enhanced Controller Area Network (eCAN) Reference Guide (Rev. D),

7-22

C280x/C2803x/C28x3x eCAN Receive

Literature Number SPRU074D, available at the Texas Instruments
Web site.

See Also C280x/C2803x/C28x3x eCAN Transmit, C280x/C2802x/C2803x/C28x3x
Hardware Interrupt

7-23

C280x/C2803x/C28x3x eCAN Transmit

Purpose Enhanced Control Area Network transmit mailbox

Library “C280x (c280xlib)” on page 6-2, “C2803x (c2803xlib)” on page 6-6, and
“C28x3x (c2833xlib)” on page 6-10

Description The C280x/C2803x/C28x3x enhanced Control Area Network (eCAN)
Transmit block generates source code for transmitting eCAN messages
through an eCAN mailbox. The eCAN modules on the DSP chip provide
serial communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x/C2803x/C28x3x supports eCAN data
frames in standard or extended format.

Note Fixed-point inputs are not supported for this block.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always right-aligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 2
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer:

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-24

C280x/C2803x/C28x3x eCAN Transmit

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-25

C280x/C2803x/C28x3x eCAN Transmit

Dialog
Box

Module
Determines which of the two eCAN modules is being configured
by this instance of the C280x/C28x3x eCAN Transmit block.
Options are eCAN_A and eCAN_B.

Mailbox number
Unique number from 0 to 15 for standard or from 0 to 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

7-26

C280x/C2803x/C28x3x eCAN Transmit

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If not selected, the CAN block code does not
wait for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

Post interrupt when message is transmitted
If selected, an asynchronous interrupt will be posted when data
is transmitted.

Note For information about setting the timing parameters of the CAN
module, see “Configuring Timing Parameters for CAN Blocks”.

References For detailed information on the eCAN module, see TMS320x281x, 280x
Enhanced Controller Area Network (eCAN) Reference Guide (Rev. D),
Literature Number SPRU074D, available at the Texas Instruments
Web site.

See Also C280x/C2803x/C28x3x eCAN Receive

7-27

C280x/C2802x/C2803x/C28x3x eCAP

Purpose Receive and log capture input pin transitions or configure auxiliary
pulse width modulator

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4, and
“C28x3x (c2833xlib)” on page 6-10

Description

Dialog
Box

The eCAP block dialog box provides configuration parameters on four
tabbed panes:

• General—Set the operating mode for the block (whether the block
performs eCAP or APWM processes, assign the pin associated, and
set the sample time

• eCAP—Configure eCAP functions such as prescaler value, capture
pin, and mode control

• APWM—Configure waveform and duty cycle values for the pulse
width modulation capability

• Interrupt—Specify when the block posts interrupts

You can add up to six C280x/C28x3x eCAP blocks to your model,
one block for each capture pin. For example, you can have one block
configured for eCAP mode with eCAP1 pin selected and five blocks
configured for APWM mode with assigned pins eCAP2 through eCAP6.
Or six blocks configured for eCAP mode with each block assigned a
different eCAP pin. You cannot assign the same eCAP pin to two eCAP
blocks in one model.

Block Input and Output Ports

The C280x/C28x3x eCAP block has optional input and output ports
as shown in the following table.

7-28

C280x/C2802x/C2803x/C28x3x eCAP

Port Description and When the
Port is Enabled

Input port SI Synchronization input for
input value from software.
Enabled when you select Enable
software forced counter
synchronizing input in either
operating mode.

Input port RA One-shot arming starts the
one-shot sequence. Enabled when
you set the mode control to One
shot.

Output port TS When you enable the reset
counter, this option resets the
capture event counter after
capturing the event time stamp.
Enabled when you select Enable
reset counter after capture
event 1 time-stamp.

Output port CF This port reports the status of the
capture event. Enabled when you
select Enable capture event
status flag output.

Output port OF Enabled when you select Enable
overflow status flag output.

Note The outputs of this block can be vectorized.

7-29

C280x/C2802x/C2803x/C28x3x eCAP

General Pane

Operating mode
When you select eCAP, the block captures and logs pin transitions
for each capture unit to a FIFO buffer. When you select APWM,
the block generates asymmetric pulse width modulation (APWM)
waveforms for driving downstream systems.

eCAPx pin
The capture unit includes the following features:

• One pin for each capture unit. For example, eCAP1, eCAP2,
and so on.

• Four maskable interrupt flags, one for each capture unit.

7-30

C280x/C2802x/C2803x/C28x3x eCAP

• Ability to specify the transition detection—rising edge, falling
edge, or both edges.

Counter phase offset value (0~4294967295)
The value you enter here provides the time base for event
captures, clocked by the system clock. A phase register is used to
synchronize with other counters via the software or hardware
forced sync (refer to Enable counter Sync-In mode). This is
particularly useful in APWM mode when you need a phase offset
between capture modules. Enter the phase offset as an integer
from 0 (no offset) to 42949667295 (232) counts.

Enable counter Sync-In mode
Select this to enable the TSCTR counter to load from the TSCTR
register when the block receives either the SYNC1 signal or a
software force event (refer to Enable software-forced counter
synchronizing input).

Enable software-forced counter synchronizing input
This option provides a convenient software method for
synchronizing one or more eCAP time bases.

Sync output selection
Select one of the list entries Pass through, CTR=PRD, or Disabled
to synchronize with other counters.

Sample time
Set the sample time for the block in seconds.

eCAP Pane

To enable the configuration parameters on this pane, select eCAP from
the Operating mode list on the General pane.

7-31

C280x/C2802x/C2803x/C28x3x eCAP

Event prescaler (integer from 0 to 31)
Multiply the input signal, called a pulse train, by this value.
Entering a 0 bypasses the input prescaler, leaving the input
capture signal unchanged.

Select mode control
Continuous performs continuous timestamp captures using a
circular buffer to capture events 1 through 4.

7-32

C280x/C2802x/C2803x/C28x3x eCAP

One-Shot disables continuous mode and enables the Enable
one-shot rearming control via input port option so you can
select it.

Enable one-shot rearming control via input port
Select this option to arm the one-shot sequence:

1 Reset the Mod4 counter to zero.

2 Unfreeze the Mod4 counter.

3 Enable capture register loading.

Stop value after
Specifies the number of capture events after which to stop the
capture.

Enable reset counter after capture event 1 timestamp
Enables a reset after capture event 1 and creates an Output port
TS. When you select this option, the eCAP process resets the
counters after receiving a capture event 1 timestamp.

Select capture event 1 polarity
Start the capture event on a Rising edge or Falling edge.

Time-Stamp counter data type
Select the data type of the counter. The list includes integer
and unsigned 8-, 16-, and 32-bit data types, double, single, and
Boolean.

Enable capture event status flag output
Output the capture event status flag on the Output port CF.
The block outputs a 0 until the event capture. After the event,
the flag value is 1.

Overflow capture event flag data type
Select the data type to represent the capture event flag. The
list includes integer and unsigned 8-, 16-, and 32-bit data types,
double, single, and Boolean.

7-33

C280x/C2802x/C2803x/C28x3x eCAP

Enable overflow status flag output
Output the status of the elements of the FIFO buffer on the
Output port OF. After you select this option, set the data type
for the flag in Overflow flag data type.

Overflow flag data type
Select the data type to represent the status flag. The list includes
integer and unsigned 8-, 16-, and 32-bit data types, double, single,
and Boolean.

APWM Pane

To enable the configuration parameters on this pane, select APWM from
the Operating mode list on the General pane.

7-34

C280x/C2802x/C2803x/C28x3x eCAP

Waveform period units
Set the units for measuring the waveform period. Clock cycles
uses the high-speed peripheral clock cycles of the DSP chip, or
Seconds. Changing these units changes the Waveform period
value and the Duty cycle value and Duty cycle units selection.

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value inWaveform period or
select Input port to use a value from the input port.

7-35

C280x/C2802x/C2803x/C28x3x eCAP

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral
clock on the F2812 chip. This clock is 75 MHz by default because
the high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Duty cycle units
Units for the duty cycle. Select Clock cycles or Percentages
from the list. Changing these units changes the Duty cycle
value, the Waveform period value, and Waveform period
units selection.

Duty cycle source
Source from which the duty cycle for the specific PWM pair is
obtained. Select Specify via dialog to enter the value in Duty
cycle or select Input port to use a value from the input port.

Duty cycle
Ratio of the PWM waveform pulse duration to the PWM waveform
period expressed in Duty cycle units.

Output polarity select
Set the active level for the output. Choose Active High or Active
Low from the list. When you select Active High, the compare
value defines the high time. Selecting Active Low directs the
compare value to define the low time.

Interrupt Pane

In the following figure, you see the interrupt options when you put
the block in eCAP mode by setting Operating mode on the General
pane to eCAP.

7-36

C280x/C2802x/C2803x/C28x3x eCAP

Post interrupt on capture event 1
Enables capture event 1 as an interrupt source. You can use the
C280x/C2802x/C2803x/C28x3x Hardware Interrupt block to react
to this interrupt.

Post interrupt on counter overflow
Enables counter overflow as an interrupt source.

The next figure presents the interrupt options when you put the block in
APWMmode by settingOperating mode on theGeneral pane to APWM.

7-37

C280x/C2802x/C2803x/C28x3x eCAP

Post interrupt on counter equal period match
Post an interrupt when the value of the counter is the same as the
value of the period register (CTR=PRD).

Post interrupt on counter equal compare match
Post an interrupt when the value of the counter is the same as the
value of the compare register (CTR=CMP).

References For detailed information about interrupt processing, see TMS320x28xx,
28xxx Enhanced Capture (eCAP) Module Reference Guide, SPRU807B,
available at the Texas Instruments Web site.

7-38

C280x/C2803x/C28x3x ePWM

Purpose Configure Event Manager to generate Enhanced Pulse Width Modulator
(ePWM) waveforms

Library “C280x (c280xlib)” on page 6-2 and “C28x3x (c2833xlib)” on page 6-10

Description A C280x/C28x3x system contains multiple ePWM modules, each having
two PWM outputs. You can use the C280x/C2803x/C28x3x ePWM block
to configure up to six ePWM modules.

When the High-Resolution Pulse Width Modulator (HRPWM) is
enabled, the ePWM block uses the Scale Factor Optimizing Software
Version 5 library (SFO_TI_Build_V5.lib), which can “dynamically
determine the number of MEP steps per SYSCLKOUT period.” For
more information, consult TMS320x28xx, 28xxx High-Resolution Pulse
Width Modulator (HRPWM) Reference Guide, Literature Number
SPRU924, available at the Texas Instruments Web site.

7-39

C280x/C2803x/C28x3x ePWM

Dialog
Box

General Pane

7-40

C280x/C2803x/C28x3x ePWM

Allow use of 16 HRPWMs (for C28044) instead of 6 PWMs
Enable all 16 High-Resolution PWM modules (HRPWM) on the
C28044 digital signal controller when the PWM resolution is too
low.

For example, the Spectrum Digital eZdsp™ F28044 board
has a system clock of 100 MHz (200-kHz switching). At
these frequencies, conventional PWM resolution is too
low—approximately 9 bits or 10 bits. By comparison, the HRPWM
resolution for the same board is 14.8 bits.

All the C280x/C2803x/C28x3x ePWM blocks in your model become
HRPWM blocks, Thus, when you enable this parameter:

• Use the HRPWM parameters under the ePWMA tab to further
make additional configuration changes.

• Most of the configuration parameters under the ePWMB tab
are unavailable and should be disregarded.

• Your model can contain up to 16 C280x/C2803x/C28x3x ePWM
blocks, provided you configure each one for a separate module.
(For example, Module is ePWM1, ePWM2, and so on.)

For processors other than the C28044, deselect (disable) Allow
use of 16 HRPWMs (for C28044) instead of 6 PWMs. To
enable HRPWM for other processors, first determine how many
HRPWM modules are available. Consult the Texas Instruments
documentation for your processor, and then use the HRPWM
parameters under the ePWMA tab to enable and configure
HRPWM.

For additional information about the C28044 and HRPWM,
consult the “References” on page 7-64 section.

Module
Specify which target ePWM module to use.

7-41

C280x/C2803x/C28x3x ePWM

Timer period units
Specify the units of the Timer period or Timer initial period
as Clock cycles (the default) or Seconds. If Timer period
units is set to Seconds, the Timer period or Timer initial
period, a double, must be down-converted for the period register,
a uint16. For best performance, select Clock cycles. Doing so
reduces calculations and rounding errors.

Note If you set Timer period units to Seconds, you must
enable support for floating-point numbers. In the model
window, select Simulation > Configuration Parameters.
In the Configuration Parameters dialog box, select Real-Time
Workshop > Interface. Under Software Environment, enable
floating-point numbers.

Timer period source
Configure the source of the timer period value. Selecting Specify
via dialog changes the following parameter to Timer period.
Selecting Input port changes the following parameter to Timer
initial period and creates a timer period input port, T, on the
block.

Timer period
Set the period of the PWM waveform in clock cycles or in seconds,
as determined by the Timer period units parameter.

Note The term clock cycles refers to the Time-base Clock on
the C280x/C28x3x chip. See the discussion of the TB clock
prescaler divider below for an explanation of how the Time-base
Clock speed is calculated.

7-42

C280x/C2803x/C28x3x ePWM

Timer initial period
The period of the waveform from the time the PWM peripheral
starts operation until the ePWM input port, T, receives a new
value for the period. Use Timer period units to measure the
period in clock cycles or in seconds.

Note The term clock cycles refers to the Time-base Clock on
the C280x/C28x3x chip. See the discussion of the TB clock
prescaler divider below for an explanation of how the Time-base
Clock speed is calculated.

Counting mode
Specify the counting mode in which to operate. C280x/C28x3x
PWMs can operate in three distinct counting modes: Up, Down,
and Up-Down. The following illustration shows the waveforms
that correspond to these three modes:

Sync output selection
This parameter corresponds to the SYNCOSEL field in the
Time-Base Control Register (TBCTL).

Use this parameter to specify the event that generates a
Time-base synchronization output signal, EPWMxSYNCO, from
the Time-base (TB) submodule.

The available choices are:

7-43

C280x/C2803x/C28x3x ePWM

• EPWMxSYNCI or SWFSYNC — a Synchronization input pulse
or Software forced synchronization pulse, respectively. This
option can be used to achieve precise synchronization across
multiple ePWM modules by daisy chaining multiple the
Time-base (TB) submodules.

• CTR=Zero— Time-base counter equal to zero (TBCTR = 0x0000)

• CTR=CMPB — Time-base counter equal to counter-compare B
(TBCTR = CMPB)

• Disable— Disable the EPWMxSYNCO output (the default)

Add S/W sync input port
Create an input port, SYNC, for a Time-base synchronization
input signal, EPWMxSYNCI. This option can be used to achieve
precise synchronization across multiple ePWM modules by
daisy-chaining multiple the Time-base (TB) submodules.

Phase offset source
Specify the source of a phase offset to apply to the Time-base
synchronization input signal, EPWMxSYNCI from the SYNC
input port. Selecting Specify via dialog creates the Phase
offset value parameter. Selecting Input port creates a phase
input port, PHS, on the block. Selecting Disable, the default
value, prevents any phase offsets from being applied to the TB
module.

Counting direction after phase synchronization
This parameter appears when Counting Mode is set to Up-Down
and Phase offset source is enabled (set to Specify via dialog
or Input port). Configure the timer to count up from zero,
or down to zero, following synchronization. This parameter
corresponds to the PHSDIR field of the Time-base Control
Register (TBCTL).

Phase offset value
This field appears when you select Specify via dialog in
Phase offset source.

7-44

C280x/C2803x/C28x3x ePWM

Configure the phase offset (delay) from the arrival of the
Time-base synchronization input signal, EPWMxSYNCI, on the
SYNC input port to moment the Time-base (TB) submodule
synchronizes the ePWM module.

Note Enter the Phase offset value in TBCLK cycles, from 0 to
65535. Fractional seconds cannot be used.

This parameter corresponds to the Time-Base Phase Register
(TBPHS).

TB clock prescaler divider
Use the TB clock prescaler divider (CLKDIV) and the High
Speed TB clock prescaler divider (HSPCLKDIV) to configure
the Time-base clock speed (TBCLK) for the ePWM module using
the following equation:

TBCLK = SYSCLKOUT/(HSPCLKDIV * CLKDIV)

For example, the default values of both CLKDIV and HSPCLKDIV
are 1, and the default frequency of SYSCLKOUT is 100 MHz, so:

TBCLK = 100 MHz = 100 MHz/(1 * 1)

The choices for the TB clock prescaler divider are: 1, 2, 4, 8,
16, 32, 64, and 128.

The TB clock prescaler divider parameter corresponds to the
CLKDIV field of the Time-base Control Register (TBCTL).

7-45

C280x/C2803x/C28x3x ePWM

Note The frequency of SYSCLKOUT depends on the oscillator
frequency and the configuration of PLL-based clock module.
Changing the values of the PLL Control Register (PLLCR) will
affect the timing of all ePWM modules.

For more information, consult the “PLL-Based Clock Module”
section of the data manual for your specific target (see
“References” on page 7-64 below).

High Speed TB clock prescaler divider
See the discussion of the TB clock prescaler divider above
for an explanation of this value’s role in setting the speed of the
Time-base Clock. Choices are to divide by 1, 2, 4, 6, 8, 10, 12,
and 14.

This parameter corresponds to the HSPCLKDIV field of the
Time-base Control Register (TBCTL).

ePWMA and ePWMB panes

Each ePWM module has two outputs, ePWMA and ePWMB. The
ePWMA output pane and ePWMB output pane include the same
settings, although the default values may be different in some cases,
as noted.

7-46

C280x/C2803x/C28x3x ePWM

7-47

C280x/C2803x/C28x3x ePWM

Enable ePWMxA
Enable ePWMxB

Enables the ePWMA and/or ePWMB output signals for the ePWM
module identified on the General pane. By default, Enable
ePWMxA is enabled, and Enable ePWMxB is disabled.

7-48

C280x/C2803x/C28x3x ePWM

Note To Enable ePWMxA or Enable ePWMxB, you must
also enable support for floating-point numbers: In the model
window, select Tools > Real Time Workshop > Options. In
the Configuration Parameters dialog box, select Real-Time
Workshop > Interface. Under Software Environment, enable
floating-point numbers.

CMPA units
CMPB units

Specify the units used by the compare register: Percentages (the
default) or Clock cycles.

Notes

• The term clock cycles refers to the Time-base Clock on the
C280x/C28x3x chip. See the discussion of the TB clock
prescaler divider below for an explanation of how the
Time-base Clock speed is calculated.

• Using percentages may cause some additional computation
time in generated code. The effects may or may not be
noticeable in your application.

• If you set CMPA units or CMPB units to Percentages, you
must also enable support for floating-point numbers: In
the model window, select Simulation > Configuration
Parameters. In the Configuration Parameters dialog box,
select Real-Time Workshop > Interface. Under Software
Environment, enable floating-point numbers.

CMPA source
CMPB source

Specify the source from which the pulse width is to be obtained. If
you select Specify via dialog (the default), enter a value in the

7-49

C280x/C2803x/C28x3x ePWM

CMPA value or CMPB value field. If you select Input port,
set the value using an input port, WA or WB, on the block. If
you select Input port also set CMPA initial value or CMPB
initial value.

CMPA value
CMPB value

This field appears when you choose Specify via dialog in
CMPA source or CMPB source. Enter a value that specifies
the pulse width, in the units specified in CMPA units or CMPB
units.

CMPA initial value
CMPB initial value

This field appears when you set CMPA source or CMPB source
to Input port. Enter the initial pulse width of CMPA or CMPB
the PWM peripheral uses when it starts operation. Subsequent
inputs to the WA or WB ports will change the CMPA or CMPB
pulse width.

Action when counter=ZERO
Action when counter=PRD
Action when counter=CMPA on CAU
Action when counter=CMPA on CAD
Action when counter=CMPB on CBU
Action when counter=CMPB on CBD

These settings, along with the other remaining settings in the
ePWMA output and ePWMB output panes, determine the
behavior of the Action Qualifier (AQ) submodule. Based on these
settings, the AQ module decides which events are converted into
various action types, thereby producing the required switched
waveforms of the ePWMxA and ePWMxB output signals.

For each of these four fields, the available choices are Do nothing,
Clear, Set, and Toggle.

The default values for these fields vary between the ePWMA
output and ePWMB output panes.

7-50

C280x/C2803x/C28x3x ePWM

The following table shows the defaults for each of these panes
when you set Counting mode to Up or Up-Down:

Action when
counter =...

ePWMA output
pane

ePWMB output
pane

ZERO Do nothing Do nothing

PRD Clear Set

CMPA on CAU Set Do nothing

CMPA on CAD Do nothing Do nothing

CMPB on CBU Do nothing Clear

CMPB on CBD Do nothing Do nothing

The following table shows the defaults for each of these panes
when you set Counting mode to Down:

Action when
counter =...

ePWMA output
pane

ePWMB output
pane

ZERO Do nothing Do nothing

PRD Clear Set

CMPA on CAD Do nothing Do nothing

CMPB on CBD Do nothing Do nothing

For a detailed discussion of the AQ submodule, consult the
TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide (SPRU791), available on the Texas Instruments
Web site.

7-51

C280x/C2803x/C28x3x ePWM

Compare value reload condition
Add continuous S/W force input port
Continuous S/W force logic
Reload condition for S/W force

These four settings determine how the action-qualifier (AQ)
submodule handles the S/W force event, an asynchronous event
initiated by software (CPU) via control register bits.

Compare value reload condition determines if and when the
Action-qualifier S/W Force Register is reloaded from a shadow
register. Choices are Load on CTR=Zero (the default), Load on
CTR=PRD, Load on either, and Freeze.

Add continuous S/W force input port creates an input port,
SFA, which you can use to control the software force logic. Send
one of the following values to SFA as an unsigned integer data
type:

• 0 = Forcing Disable: Do nothing. The default.

• 1 = Forcing Low: Clear low

• 2 = Forcing High: Set high

If you did not create the SFA input port, you can use Continuous
S/W force logic to select which type of software force logic to
apply. The choices are:

• Forcing Disable: Do nothing. The default.

• Forcing Low: Clear low

• Forcing High: Set high

Reload condition for S/W force — Choices are Zero (the
default), Period, Either period or zero, and Immediate.

Enable HRPWM
Select to enable High Resolution PWM settings. When the
effective resolution for conventionally generated PWM is

7-52

C280x/C2803x/C28x3x ePWM

insufficient, you may want to consider High Resolution PWM
(HRPWM). The resolution of PWM is normally dependent
upon the PWM frequency and the underlying system clock
frequency. To address this limitation, HRPWM usesMicro Edge
Positioner (MEP)™ technology to position edges more finely by
dividing each coarse system clock. The accuracy of the subdivision
is on the order of 150ps. The relationship between one system
clock and edge position in terms of MEP steps is shown in the
following figure:

HRPWM loading mode
Specify loading mode for HRPWM. This selects the time event
that loads the CMPAHR shadow value into the active register.

HRPWM control mode
Specify control mode for HRPWM. The MEP can be controlled
using duty cycle control from the CMPAHR register, or using
phase control from the TBPHSHR register. Rising edge or falling
edge should be controlled from the CMPAHR register. For control
of both edges, use the TBPHSHR register.

HRPWM edge control mode
Specify edge of the PWM that is controlled by the micro-edge
positioner™ (MEP) logic.

7-53

C280x/C2803x/C28x3x ePWM

CMPAHR
Specify Compare A (High Resolution) register

Enable scale factor optimizer software™
Select to enable Scale Factor Optimizing Software Version 5
(SFO_V5) library. The TI-supplied MEP scale factor optimizer
software functions help to determine dynamically the optimum
step size for the MEP based on operating temperature and
voltage. Applications that use the HRPWM feature should use
the SFO_V5.

Deadband Unit Pane

The Deadband unit pane lets you specify parameters for the
Dead-Band Generator (DB) submodule. Since using the DB submodule
is not required for generating a deadband in PWM output, this pane is
empty by default. The elements of the Deadband unit pane shown in
the following image appear only when you select either or both of the
Use deadband for ePWMxA or Use deadband for ePWMxB check
boxes in the ePWMA output or ePWMB output panes.

7-54

C280x/C2803x/C28x3x ePWM

Use deadband for ePWMxA
Use deadband for ePWMxB

Enables a deadband area of no signal overlap between pairs of
ePWM output signals. This check box is cleared by default.

Deadband polarity
Configure the deadband polarity as AH (active high, the default),
AL (active low), AHC (active high complementary), or ALC (active
low complementary).

7-55

C280x/C2803x/C28x3x ePWM

Deadband period source
Specify the source from which the control logic is to be obtained.
Choose Specify via dialog (the default) to enter explicit values,
or Input port to use a value from the input port.

RED deadband period
This field appears only when you select Use deadband for
ePWMxA in the ePWMA output pane. Enter a value from 0 to
1023 to specify a rising edge delay.

FED deadband period
This field appears only when you select Use deadband for
ePWMxB in the ePWMB output pane. Enter a value from 0 to
1023 to specify a falling edge delay.

Event Trigger Pane

Configure ADC Start of Conversion (SOC) by one or both of the ePWMA
and ePWMB outputs.

7-56

C280x/C2803x/C28x3x ePWM

Enable ADC start module A
When you select this option, ePWM starts the Analog-to-Digital
Conversion (ADC) for module A. By default, this check box is
cleared (disabled).

Number of event for SOCA to be generated
When you select Enable ADC start module A, this field specifies
the number of the event that triggers ADC Start of Conversion for
Module A (SOCA): First event triggers ADC start of conversion
with every event (the default), Second event triggers ADC start

7-57

C280x/C2803x/C28x3x ePWM

of conversion with every second event, and Third event triggers
ADC start of conversion with every third event.

Module A counter match event condition
When you select Enable ADC start module A, this field
specifies the counter match condition that triggers an ADC start
of conversion event. The choices are:

CTR=Zero
When the ePWM counter reaches zero (the default).

CTR=PRD
When the ePWM counter reaches the period value.

CTRU=CMPA
When the ePWM counter reaches the compare A value on the
way up.

CTRD=CMPA
When the ePWM counter reaches the compare A value on the
way down.

CTRU=CMPB
When the ePWM counter reaches the compare B value on the
way up.

CTRD=CMPB
When the ePWM counter reaches the compare B value on the
way down.

Enable ADC start module B
When you select this option, ePWM starts the Analog-to-Digital
Conversion (ADC) for module B. By default, this check box is
cleared (disabled).

Number of event for SOCB to be generated
When you select Enable ADC start module B, this field specifies
the number of the event that triggers ADC start of conversion:
First event triggers ADC start of conversion with every event
(the default), Second event triggers ADC start of conversion

7-58

C280x/C2803x/C28x3x ePWM

with every second event, and Third event triggers ADC start of
conversion with every third event.

Module B counter match event condition
When you select Enable ADC start module B, this field
specifies the counter match condition that triggers an ADC start
of conversion event. Choices are CTR=Zero (the default), CTR=PRD,
CTRU=CMPA, CTRD=CMPA, CTRU=CMPB, and CTRD=CMPB, as defined for
Module A counter match event condition above.

Enable ePWM interrupt
When you select this option, you can generate interrupts based on
different events defined by Number of event for interrupt to
be generated and Interrupt counter match event condition.
By default, this check box is cleared.

Number of event for interrupt to be generated
When you select Enable ePWM interrupt, this field specifies the
number of the event that triggers the ePWM interrupt: First
event triggers ePWM interrupt with every event (the default),
Second event triggers ePWM interrupt with every second event,
and Third event triggers ePWM interrupt with every third event.

Interrupt counter match event condition
When you select Enable ePWM interrupt, this field specifies the
counter match condition that triggers ePWM interrupt. Choices
are CTR=Zero (the default), CTR=PRD, CTRU=CMPA, CTRD=CMPA,
CTRU=CMPB, and CTRD=CMPB, as defined for Module A counter
match event condition above.

PWM Chopper Control Pane

The PWM chopper control pane lets you specify parameters
for the PWM-Chopper (PC) submodule. The PC submodule uses
a high-frequency carrier signal to modulate the PWM waveform
generated by the AQ and DB modules.

7-59

C280x/C2803x/C28x3x ePWM

Chopper module enable
Select to enable the chopper module. Use of the chopper module is
optional, so this check box is cleared by default.

Chopper frequency divider
Chopper frequency divider is a prescaler that is used to set
the frequency of the chopper clock. The system clock speed is
divided by this value to determine the chopper clock frequency.
Choose an integer value from 1 to8.

7-60

C280x/C2803x/C28x3x ePWM

Chopper clock cycles width of first pulse
Choose an integer value from 1 to 16 to set the width of the first
pulse. Use this feature to provide a high-energy first pulse to
ensure hard and fast power switch turn on.

Chopper pulse duty cycle
The duty cycles of the second and subsequent pulses are also
programmable. Choices are 12.5%, 25%, 37.5%, 50%, 62.5%, 75%,
and 87.5%.

Trip Zone Unit Pane

The Trip Zone unit pane lets you specify parameters for the Trip-zone
(TZ) submodule. Each ePWM module is connected to six TZ signals
(TZ1 to TZ6) that are sourced from the GPIO MUX. These signals
indicate external fault or trip conditions. Use the settings in this pane
to program the EPWM outputs to respond when faults occur.

7-61

C280x/C2803x/C28x3x ePWM

Trip zone source
Specify the source of the control logic. Select Specify via
dialog (the default) to enable specific Trip-zone signals in the
block dialog. Choose Input port to enable specific Trip-zone
signals using a block input port, TZSEL.

If you select Input port, use the following bit operation to
determine the value of the 16-bit integer to send to the TZSEL:

7-62

C280x/C2803x/C28x3x ePWM

TZSEL INPUT VALUE = (OSHT6*213 + OSHT5*212 + OSHT4*211

+ OSHT3*210 + OSHT2*29 + OSHT1*28 + CBC6*25 + CBC5*24 +
CBC4*23 + CBC3*22 + CBC2*21 + CBC1*20)

For example, to enable One Shot TZ6 (OSHT6) and One Shot TZ5
(OSHT5) as trip zone sources, set the value of OSHT6 and OSHT5
to “1” and leave the remaining values as “0”. This produces:

TZSEL INPUT VALUE = (1*213 + 1*212 + 0*211 …)

TZSEL INPUT VALUE = (8192 + 4096 + 0 …)

TZSEL INPUT VALUE = 12288

When the block receives this value, it applies it to the TZSEL
register as a binary value: 11000000000000.

For more information, see the ”Trip-Zone Submodule Control and
Status Registers” section of the TMS320x28xx, 28xxx Enhanced
Pulse Width Modulator (ePWM) Module Reference Guide,
Literature Number: SPRU791 on www.ti.com

Enable One-Shot TZ1
Enable One-Shot TZ2
Enable One-Shot TZ3
Enable One-Shot TZ4
Enable One-Shot TZ5
Enable One-Shot TZ6

Select any of these check boxes to enable the corresponding
Trip-zone signal in One-Shot Mode. In this mode, when the trip
event is active, the respective action on the EPWMxA/B output
is carried out immediately and is latched. The condition remains
latched and can only be cleared by the user under software control.

7-63

C280x/C2803x/C28x3x ePWM

Enable Cyclic TZ1
Enable Cyclic TZ2
Enable Cyclic TZ3
Enable Cyclic TZ4
Enable Cyclic TZ5
Enable Cyclic TZ6

Select any of these check boxes to enable the corresponding
Trip-zone signal in Cycle-by-Cycle Mode. In this mode,
when the trip event is active, the respective action on the
EPWMxA/B output is carried out immediately and is latched. In
Cycle-by-Cycle Mode, the condition is automatically cleared when
the PWM Counter reaches zero. Therefore, in Cycle-by-Cycle
Mode, the trip event is cleared or reset every PWM cycle.

Enable OST Interrupt
Generate an interrupt when the one shot (OST) triggering event
occurs.

Enable CBC Interrupt
Generate an interrupt when the cyclic or cycle-by-cycle (CBC)
triggering event occurs.

ePWMxA forced to
ePWMxB forced to

Upon a fault condition, the ePWMxA and/or ePWMxB output can
be overridden and forced to one of the following: No action (the
default), High, Low, or Hi-Z (High Impedance).

References For more information, consult the following references, available at
the Texas Instruments Web site:

• TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM)
Module Reference Guide, literature number SPRU791

• TMS320x280x, 2801x, 2804x High Resolution Pulse Width Modulator
Reference Guide, literature number SPRU924E

• Using the ePWM Module for 0% - 100% Duty Cycle Control
Application Report, literature number SPRU791

7-64

C280x/C2803x/C28x3x ePWM

• Configuring Source of Multiple ePWM Trip-Zone Events, literature
number SPRAAR4

• TMS320F2809, TMS320F2808, TMS320F2806 TMS320F2802,
TMS320F2801 TMS320C2802, TMS320C2801, and TMS320F2801x
DSPs Data Manual, literature number SPRS230

• TMS320F28044 Digital Signal Processor Data Manual, literature
number SPRS357

• TMS320F28335/28334/28332 TMS320F28235/28234/28232
Digital Signal Controllers (DSCs) Data Manual, literature number
SPRS439

See Also C280x/C28x3x ADC

7-65

C280x/C2803x/C28x3x eQEP

Purpose Quadrature encoder pulse circuit

Library “C280x (c280xlib)” on page 6-2 , “C2803x (c2803xlib)” on page 6-6,and
“C28x3x (c2833xlib)” on page 6-10

Description The enhanced quadrature encoder pulse (eQEP) module is used for
direct interface with a linear or rotary incremental encoder to get
position, direction, and speed information from a rotating machine for
use in a high-performance motion and position-control system.

7-66

C280x/C2803x/C28x3x eQEP

Dialog
Box

General Pane

Module
If more than one eQEP module is available on your processor,
select the module this block configures.

Position counter mode
The input signals QEPA and QEPB are processed by the
Quadrature Decoder Unit (QDU) to produce clock (QCLK) and
direction (QDIR) signals. Choose the position counter mode
appropriate to the way the input to the eQEP module is encoded.

7-67

C280x/C2803x/C28x3x eQEP

Choices are Quadrature-count (the default), Direction-count,
Up-count, and Down-count.

Positive rotation
This field appears only when you choose Quadrature-count in
Position counter mode. Choose the direction that represents
positive rotation: Clockwise (the default) or Counterclockwise.

External clock rate
This field appears only when you choose Direction-count,
Up-count, or Down-count in Position counter mode. In these
cases, you can program clock generation to the position counter to
occur on both rising and falling edges of the QEPA input or on the
rising edge only. The effect of choosing the former is increasing
the measurement resolution by a factor of 2. Choices are 2x
resolution: Count the rising/falling edge (the default) or
1x resolution: Count the rising edge only.

Quadrature phase error flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
generate an interrupt when the QEPA and QEPB signals fall out
of their normal state of being 90 degrees out of phase.

Quadrature direction flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
create a port on the block that gives access to the direction flag of
the quadrature module.

Invert input QEPxA polarity
Invert input QEPxB polarity
Invert input QEPxI polarity
Invert input QEPxS polarity

Select any of these check boxes to invert the polarity of the
respective eQEP input signal.

Index pulse gating option
Select this check box to enable gating of the index pulse.

7-68

C280x/C2803x/C28x3x eQEP

Sample time
Enter the sample time in seconds.

Position Counter Pane

Output position counter
This check box is selected by default. Leave it selected to output
the position counter signal PCSOUT from the position counter
and control unit (PCCU).

7-69

C280x/C2803x/C28x3x eQEP

Maximum position counter value
Enter a maximum value for the position counter. Enter a value
from 0 to 4294967295. The value defaults to the maximum
allowed value of 4294967295.

Enable set to init value on index event
Select to set the position counter to its initialization value on an
index event. This check box is cleared by default.

Set to init value on index event
This field appears only when Enable set to init value on
index event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the index input.

Enable set to init value on strobe event
Select to set the position counter to its initialization value on a
strobe event. This check box is cleared by default.

Set to init value on strobe event
This field appears only when Enable set to init value on
strobe event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the strobe input.

Enable software initialization
Select to allow the position counter to be set to its initialization
value via software. This check box is cleared by default.

Software initialization source
This field appears only when Enable software initialization is
selected. Choose Set to init value at start up (the default)
or Input port to receive the control logic through the input port.

Initialization value
This field appears only when Enable set to init value on
index event, Enable set to init value on strobe event, or
Enable software initialization check box is selected. Enter the
initialization value for the position counter. Enter a value from 0
to 4294967295. The value defaults to 2147483648.

7-70

C280x/C2803x/C28x3x eQEP

Position counter reset mode
Choose a position counter reset mode, depending on the nature
of the system the eQEP module is working with: Reset on an
index event (the default), Reset on the maximum position,
Reset on the first index event, or Reset on a time unit
event.

Output position counter error flag
This check box appears only when Position counter reset mode
is set to Reset on an index event. Select this check box to
output the position counter error flag on error.

Output latch position counter on index event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP index input can be configured
to latch the position counter (QPOSCNT) into QPOSILAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each index event.

Index event latch of position counter
This field appears only when the Output latch position
counter on index event check box is selected. Choose one of the
following events to configure the eQEP position counter to latch
on that event: Rising edge, Falling edge, or Software index
marker via input port.

Output latch position counter on strobe event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP strobe input can be configured
to latch the position counter (QPOSCNT) into QPOSSLAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each strobe event.

Strobe event of latched position counter
This field appears only when theOutput latch position counter
on strobe event check box is selected. Choose Rising edge to
latch on the rising edge of the strobe event input, or Depending

7-71

C280x/C2803x/C28x3x eQEP

on direction to latch on the rising edge in the forward direction
and the falling edge in the reverse direction.

Speed Calculation Pane

Enable QEP capture
The eQEP peripheral includes an integrated edge capture unit
to measure the elapsed time between the unit position events.

7-72

C280x/C2803x/C28x3x eQEP

Check this check box to enable the edge capture unit. This check
box is cleared by default.

Output capture timer
Select this check box to output the capture timer into the capture
period register. This check box is cleared by default.

Output capture period timer
Select this check box to output the capture period into the capture
period register. This check box is cleared by default.

eQEP capture timer prescaler
The eQEP capture timer runs from prescaled SYSCLKOUT. The
capture timer period is the value of SYSCLKOUT divided by
the value you choose in this field. Choices are 1, 2, 4, 8, 16, 32,
64, and 128 (the default).

Unit position event prescaler
The timing of the unit position event is determined by prescaling
the quadrature-clock (QCLK). QCLK is divided by the value you
choose in this popup. Choices are 4, 8, 16, 32, 64, 128, 256, 512,
1024, and 2048 (the default).

Enable and output overflow error flag
Select this check box to enable and output the eQEP overflow
error flag in the event of capture timer overflow between unit
position events.

Enable and output direction change error flag
Select this check box to enable and output the direction change
error flag.

Capture timer and position
Choose the event that triggers the latching of the capture timer
and capture period register: On position counter read (the
default) or On unit time-out event.

Unit timer period
This field appears only when you choose On unit time-out
event in Capture timer and position. Enter a value for the

7-73

C280x/C2803x/C28x3x eQEP

unit timer period from 0 to 4294967295. The value defaults to
100000000.

Output capture timer latched value
Select this check box to output the capture timer latched value
from the QCTMRLAT register.

Output capture timer period latched value
Select this check box to output the capture timer period latched
value from the QCPRDLAT register.

Output position counter latched value
Select this check box to output the position counter latched value
from the QPOSLAT register.

7-74

C280x/C2803x/C28x3x eQEP

Compare Output Pane

Enable position-compare sync signal output
The eQEP peripheral includes a position-compare unit that is
used to generate the position-compare sync signal on compare
match between the position counter register (QPOSCNT) and the
position-compare register (QPOSCMP). Select this check box to

7-75

C280x/C2803x/C28x3x eQEP

enable the position-compare sync signal output. This check box is
cleared by default.

Sync output pin selection
Choose which pin is used for the sync signal output. Choices are
Index pin is used for sync output (the default) and Strobe
pin is used for sync output.

Compare value source
Choose the source of the value to use in the position comparison.
Choose Specify via dialog (the default) to specify a fixed value
or Input port to read the value from the input port.

Position compare shadow load mode
This field lets you enable or disable shadow mode for use in
generating the position-compare sync signal (shadow mode is
enabled by default). When shadow mode is enabled, you can also
choose an event to trigger the loading of the shadow register value
into the active register.

Choose Disable shadow mode to disable shadow mode. Choose
Load on QPOSCNT=0 (the default) to load on the position-counter
zero event. Choose Load on QPOSCNT=QPOSCMP to load on compare
match.

Position compare value
This field appears only when you choose Specify via dialog in
Compare value source. Enter a value from 0 to 4294967295.
The value defaults to 4294967295. This value is loaded into the
position-compare register (QPOSCMP).

Sync output pulse width
The pulse stretcher logic in the position-compare unit generates
a programmable position-compare sync pulse output on the
position-compare match.

Enter a value from 1 to 4096 to determine the pulse width of the
position-compare sync output signal. The value defaults to 1.

7-76

C280x/C2803x/C28x3x eQEP

Polarity of sync output
Choose a value to determine the polarity of the sync output signal:
Active high (the default) or Active low.

Watchdog Unit Pane

7-77

C280x/C2803x/C28x3x eQEP

Enable watchdog time out flag via output port
The eQEP peripheral contains a watchdog timer that monitors the
quadrature-clock to indicate proper operation of the motion-control
system. Select this check box to enable the watchdog time out flag.

Watchdog timer
Enter the time-out value for the watchdog timer. Enter a value
from 0 to 65535 (the default).

7-78

C280x/C2803x/C28x3x eQEP

Signal Data Types Pane

The image above shows the default condition of the Signal data
types pane. Choosing any of a number of options in other panes of the
C280x/C28x3x eQEP dialog box causes a corresponding popup to appear
in the Signal data types pane.

The following table summarizes the options for which you can set the
data type in the Signal data types pane:

7-79

C280x/C2803x/C28x3x eQEP

Pane Option

Quadrature phase error flag output portGeneral

Quadrature direction flag output port

Output position counter (selected by default)

Output position counter error flag

Output latch position counter on index event

Position
counter

Output latch position counter on strobe event

Output capture timer

Output capture period timer

Enable and output overflow error flag

Enable and output direction change error flag

Output capture timer latched value

Output capture timer period latched value

Speed
calculation

Output position counter latched value

Watchdog unit Enable watchdog time out flag via output port

The fields that appear on the Signal data types pane are named
similarly to these options. For example, Position counter value
data type on the Signal data types pane corresponds to the Output
position counter option on the Position counter pane.

For all data type fields, valid data types are auto, double, single,
int8, uint8, int16, uint16, int32, uint32, and boolean.

7-80

C280x/C2803x/C28x3x eQEP

Interrupt Pane

The image above shows the default condition of the Interrupt pane.
Interrupts corresponding to specific events are enabled or disabled
based on the settings in this pane.

Position counter error interrupt enable
Check this box to enable position counter error interrupts. This
checkbox is cleared by default.

7-81

C280x/C2803x/C28x3x eQEP

Quadrature phase error interrupt enable
Check this box to enable quadrature phase error interrupts. This
checkbox is cleared by default.

Quadrature direction change interrupt enable
Check this box to enable quadrature direction change interrupts
for changes in the counting direction. This checkbox is cleared
by default.

Watchdog timeout interrupt enable
The eQEP Peripheral contains a watchdog timer that monitors
the quadrature clock. Check this box to enable watchdog timeout
interrupts. This checkbox is cleared by default.

Position counter underflow interrupt enable
Check this box to enable position counter underflow interrupts.
This checkbox is cleared by default.

Position counter overflow interrupt enable
Check this box to enable position counter overflow interrupts.
This checkbox is cleared by default.

Position-compare ready interrupt enable
Check this box to enable position-compare ready interrupts. This
checkbox is cleared by default.

Position-compare match interrupt enable
Check this box to enable position-compare match interrupts. This
checkbox is cleared by default.

Strobe event latch interrupt enable
Check this box to enable strobe event latch interrupts. This
checkbox is cleared by default.

Index event latch interrupt enable
Check this box to enable index event latch interrupts. This
checkbox is cleared by default.

Unit timeout interrupt enable
Check this box to enable unit timeout interrupts. This checkbox is
cleared by default.

7-82

C280x/C2803x/C28x3x eQEP

References For more information on the QEP module, consult the following
documents, available at the Texas Instruments Web site:

• TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse
(eQEP) Module Reference Guide, Literature Number SPRU790

• Using the Enhanced Quadrature Encoder Pulse (eQEP) Module in
TMS320x280x, 28xxx as a Dedicated Capture Application Report,
Literature Number SPRAAH1

7-83

C280x/C2802x/C2803x/C28x3x GPIO Digital Input

Purpose Configure general-purpose input pins

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, and “C28x3x (c2833xlib)” on page 6-10

Description

This block configures the general-purpose I/O (GPIO) MUX registers
that control the operation of GPIO shared pins for digital input. Each
I/O port has one MUX register that selects peripheral operation or
digital I/O operation (the default). When a pin is configured for digital
input, it becomes unavailable for digital output or peripheral operation.
You can configure the Input qualification type for individual digital
input pins. To do so, use the Peripheral tab of the Target Preferences
block for your processor type.

Each processor has a different number of available GPIO pins:

• C280x has 35 GPIO pins

• C2802x has 22 GPIO pins, even though GPIO group lists 35

• C2803x has 45 GPIO pins

• C28x3x has 64 GPIO pins

Note To avoid losing any new settings, click Apply before changing the
GPIO Group parameter.

7-84

C280x/C2802x/C2803x/C28x3x GPIO Digital Input

Dialog
Box

The dialog boxes for the C2802x and C28x3x processors are similar to
that of the C280x, shown in the preceding figure.

GPIO Group
Select the group of GPIO pins you want to view or configure.
For a table of GPIO pins and peripherals, refer to the Texas
Instruments documentation for your specific target.

Sample time
Specify the time interval between output samples. To inherit
sample time from the upstream block, set this parameter to -1.

7-85

C280x/C2802x/C2803x/C28x3x GPIO Digital Input

For more information, refer to the section on “How to Specify the
Sample Time” in the Simulink documentation.

Data type
Specify the data type of the input. The input is read as 16-bit
integer, and then cast to the selected data type. Valid data types
are auto, double, single, int8, uint8, int16, uint16, int32,
uint32 or boolean.

See Also C280x/C2802x/C2803x/C28x3x GPIO Digital Output

7-86

C280x/C2802x/C2803x/C28x3x GPIO Digital Output

Purpose Configure general-purpose input/output pins as digital outputs

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, and “C28x3x (c2833xlib)” on page 6-10

Description Configure individual general-purpose input/output (GPIO) pins to
operate as digital outputs. When a pin is configured for digital output,
it cannot operate as a digital input or connect to peripheral I/O signals.
When you select a pin for digital output, the user interface presents a
Toggle option that inverts the output signal on the pin.

Each processor has a different number of available GPIO pins:

• C280x has 35 GPIO pins

• C2802x has 22 GPIO pins, even though GPIO group lists 35

• C2803x has 45 GPIO pins

• C28x3x has 64 GPIO pins

Note To avoid losing any new settings, click Apply before changing the
GPIO Group parameter.

7-87

C280x/C2802x/C2803x/C28x3x GPIO Digital Output

Dialog
Box

The dialog boxes for the C2802x and C28x3x processors are similar to
that of the C280x, shown in the preceding figure.

GPIO Group
Select the group of GPIO pins you want to view or configure.

GPIO pins for output
To configure a GPIO pin for digital output, select the checkbox
next to it. Refer to the block for a table of all available peripherals
for each pin.

A value of True at the input of the block drives the selected GPIO
pin high. A value of False at the input of the block grounds the
selected GPIO pin.

Toggle GPIO[bit#]
For each pin selected for output, you can elect to toggle the signal
of that pin. In Toggle mode, a value of True at the input of the

7-88

C280x/C2802x/C2803x/C28x3x GPIO Digital Output

block switches the GPIO pin output level. Thus, if the GPIO pin
was driven high, in Toggle mode, with the value of True at the
input, the pin output level is driven low. If the GPIO pin was
driven low, in Toggle mode, with the value of True at the input of
the block, the same pin output level is driven high. If the input of
the block is False, there is no effect on the GPIO pin output level.

Note The outputs of this block can be vectorized.

See Also C280x/C2802x/C2803x/C28x3x GPIO Digital Input

7-89

C280x/C2802x/C2803x/C28x3x I2C Receive

Purpose Configure inter-integrated circuit (I2C) module to receive data from
I2C bus

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, and “C28x3x (c2833xlib)” on page 6-10

Description Configure the I2C module to receive data from the two-wire I2C serial
bus.

7-90

C280x/C2802x/C2803x/C28x3x I2C Receive

Dialog
Box

Addressing format
The I2C receive block supports the 7–Bit addressing, 10–Bit
addressing, and Free data format. The default setting is 7–Bit
addressing.

Slave address source
Select the method for setting the slave address register of the
I2C slave. Selecting Specify via dialog displays Slave address
register parameter. Selecting Input port enables definition
of the address register via the input port. The default setting
is Specify via dialog.

7-91

C280x/C2802x/C2803x/C28x3x I2C Receive

Slave address register
When you select Specify via dialog, enter a value for the Slave
address register. The default value is 80. This field takes a
decimal value.

Bit Count
Set the bit count to 1 through 8. The default setting is 8.

Read data length
Set the length of the read data. The default value is 1.

NACK bit generation
Select this parameter to generate a no-acknowledge bit (NACK)
during the I2C acknowledge cycle and ignore new bits from
the transmitting I2C node. The default setting is disabled (not
selected).

Enable stop condition
Enable the I2C Receive Block in master mode to send a STOP
message to the I2C Transmit block while it is in slave mode. The
default setting is disabled (not selected).

Output receiving status
Selecting this parameter creates a status output that indicates
when the I2C receive block is receiving a message. The default
setting is disabled (not selected).

Sample time
Set the sample time for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Interrupt Processing” on page 1-11 for a discussion
of block placement and other necessary settings. The default
value is 0.001.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. You
can set this parameter to int8, uint8, int16, uint16, int32, or
uint32. The default setting is int8.

7-92

C280x/C2802x/C2803x/C28x3x I2C Receive

References For detailed information on the I2C module, see:

• The TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Module
Reference Guide, Literature Number SPRU721, available at the
Texas Instruments Web site, www.ti.com.

• The Philips Semiconductors Inter-IC bus (I2C-bus) specification
version 2.1 is available on the Philips Semiconductors Web site at
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf.

See Also C280x/C2802x/C2803x/C28x3x I2C Transmit

7-93

http://www.ti.com/
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

C280x/C2802x/C2803x/C28x3x I2C Transmit

Purpose Configure inter-integrated circuit (I2C) module to transmit data to I2C
bus

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, and “C28x3x (c2833xlib)” on page 6-10

Description Configure the I2C module to transmit data to the two-wire I2C serial
bus. Also configure the

Note You can use this block to configure the I2C settings under the
Peripherals tab of the target preference blocks for the Custom, F2808
eZdsp, and F28335 eZdsp boards.

Dialog
Box

7-94

C280x/C2802x/C2803x/C28x3x I2C Transmit

Addressing format
The I2C transmit block supports the 7–Bit addressing, 10–Bit
addressing, and Free data format. The default setting is 7–Bit
addressing.

Slave address source
Select the method for setting the slave address register of the
I2C slave. Selecting Specify via dialog displays Slave address
register parameter . Selecting Input port enables definition
of the address register via the input port. The default setting
is Specify via dialog.

Slave address register
When you select Specify via dialog, enter a value for the Slave
address register. The default value is 80.

Bit Count
Set the bit count to 1 through 8. The default setting is 8.

Enable stop condition
Selecting this parameter enables the transmitter to accept a
STOP condition from the C280x/C2802x/C2803x/C28x3x I2C
Receive block. The default setting is disabled (not selected).

Enable repeat mode
Selecting this parameter enables repeat mode. The default setting
is disabled (not selected).

Output transmitting status
Selecting this parameter creates a status output that indicates
when the I2C transmit block is transmitting a message. The
default setting is disabled (not selected).

References For detailed information on the I2C module, see:

• The TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Module
Reference Guide, Literature Number SPRU721, available at the
Texas Instruments Web site, www.ti.com.

7-95

http://www.ti.com/

C280x/C2802x/C2803x/C28x3x I2C Transmit

• The Philips Semiconductors Inter-IC bus (I2C-bus) specification
version 2.1 is available on the Philips Semiconductors Web site at
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf.

See Also C280x/C2802x/C2803x/C28x3x I2C Receive

7-96

http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

C280x/C2802x/C2803x/C28x3x SCI Receive

Purpose Receive data on target via serial communications interface (SCI) from
host

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, and “C28x3x (c2833xlib)” on page 6-10

Description The C280x/C28x3x SCI Receive block supports asynchronous serial
digital communications between the target and other asynchronous
peripherals in nonreturn-to-zero (NRZ) format. This block configures
the C280x/C28x3x DSP target to receive scalar or vector data from the
COM port via the C280x/C28x3x target’s COM port.

Note For any given model, you can have only one C280x/C28x3x SCI
Receive block per module. There are two modules, A and B, which can
be configured through the F2808 eZdsp Target Preferences block.

Many SCI-specific settings are in the DSPBoard section of the F2808
eZdsp Target Preferences block. You should verify that these settings
are correct for your application.

7-97

C280x/C2802x/C2803x/C28x3x SCI Receive

Dialog
Box

SCI module
SCI module to be used for communications.

7-98

C280x/C2802x/C2803x/C28x3x SCI Receive

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included in
the total byte count. To specify a null value (no package header),
enter two single quotes alone.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are
they included in the total byte count. To specify a null value (no
package terminator), enter two single quotes alone.

Data type
Data type of the output data. Available options are single, int8,
uint8, int16, uint16, int32, or uint32.

Data length
How many of Data type the block will receive (not bytes).
Anything more than 1 is a vector. The data length is inherited
from the input (the data length originally input to the host-side
SCI Transmit block).

7-99

C280x/C2802x/C2803x/C28x3x SCI Receive

Initial output
Default value from the C280x/C28x3x SCI Receive block. This
value is used, for example, if a connection time-out occurs and the
Action taken when connection timeout field is set to “Output
the last received value”, but nothing yet has been received.

Action taken when connection timeout
Specify what to output if a connection time-out occurs. If “Output
the last received value” is selected, the last received value is what
is output, unless none has been received yet, in which case the
Initial output is considered the last received value.

If you select "Output custom value", use the "Output value when
connection times out" field to set the custom value.

7-100

C280x/C2802x/C2803x/C28x3x SCI Receive

7-101

C280x/C2802x/C2803x/C28x3x SCI Receive

Sample time
Sample time, Ts, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Interrupt Processing” on page 1-11 for a discussion
of block placement and other necessary settings.

Output receiving status
When this field is checked, the C280x/C28x3x SCI Receive block
adds another output port for the transaction status, and appears
as shown in the following figure.

The error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an error in the received data (checksum error)

• 3: SCI parity error flag — Occurs when a character is received
with a mismatch

• 4: SCI framing error flag — Occurs when an expected stop bit
is not found

Enable receive FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action (for example,
read data as soon as it is received). If this option is cleared, the
block stays in polling mode. If the block is in polling mode and not
blocking, it checks the FIFO to see if there is data to read. If data
is present, it reads and outputs. If no data is present, it continues.
If the block is in polling mode and blocking, it waits until data is
available to read (after data length is reached).

7-102

C280x/C2802x/C2803x/C28x3x SCI Receive

Receive FIFO interrupt level
This parameter is enabled when the Enable receive FIFO
interrupt option is selected. Select an interrupt level from 0 to
16. The default level is 0.

References For detailed information on the SCI module, see TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C280x/C2802x/C2803x/C28x3x SCI Transmit,
C280x/C2802x/C2803x/C28x3x Hardware Interrupt

7-103

C280x/C2802x/C2803x/C28x3x SCI Transmit

Purpose Transmit data from target via serial communications interface (SCI)
to host

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, and “C28x3x (c2833xlib)” on page 6-10

Description The C280x/C28x3x SCI Transmit block transmits scalar or vector data
in int8 or uint8 format from the C280x/C28x3x target’s COM ports in
nonreturn-to-zero (NRZ) format. You can specify how many of the six
target COM ports to use. The sampling rate and data type are inherited
from the input port. The data type of the input port must be one of the
following: single, int8, uint8, int16, uint16, int32, uint32. If no data
type is specified, the default data type is uint8.

Note For any given model, you can have only one C280x/C28x3x SCI
Transmit block per module. There are two modules, A and B, which can
be configured through the F2808 eZdsp Target Preferences block.

Many SCI-specific settings are in the DSPBoard section of the Target
Preferences block. You should verify that these settings are correct
for your application.

Fixed-point inputs are not supported for this block.

7-104

C280x/C2802x/C2803x/C28x3x SCI Transmit

Dialog
Box

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the sent data
package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not sent nor are they included in
the total byte count. To specify a null value (no package header),
enter two single quotes alone.

7-105

C280x/C2802x/C2803x/C28x3x SCI Transmit

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Receive block.

Additional package terminator
This field specifies the data located at the end of the sent
data package, which is not part of the data being transmitted,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not sent nor are they
included in the total byte count. To specify a null value (no
package terminator), enter two single quotes alone.

Enable transmit FIFO interrupt
If checked, an interrupt is posted when FIFO is full, allowing the
subsystem to take some sort of action.

References For detailed information on the SCI module, see TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C280x/C2802x/C2803x/C28x3x SCI Receive,
C280x/C2802x/C2803x/C28x3x Hardware Interrupt

7-106

C280x/C2802x/C2803x/C28x3x Software Interrupt
Trigger

Purpose Generate software triggered nonmaskable interrupt

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, and “C28x3x (c2833xlib)” on page 6-10

Description When you add this block to a model, the block polls the input port for
the input value. When the input value is greater than the value in
Trigger software interrupt when input value is greater than, the
block posts the interrupt to a Hardware Interrupt block in the model.

To use this block, add a Hardware Interrupt block to your model
to process the software triggered interrupt from this block into an
interrupt service routine on the processor. Set the interrupt number
in the Hardware Interrupt block to the value you set here in CPU
interrupt number. The Hardware Interrupt block is located in the
idelinklib_ticcs library (Embedded IDE Link > Supported IDEs > Texas
Instruments Code Composer Studio).

The CPU and PIE interrupt numbers together specify a single interrupt
for a single peripheral or peripheral module. The following table maps
CPU and PIE interrupt numbers to these peripheral interrupts. The
row numbers are CPU values and the column numbers are the PIE
values.

Note Fixed-point inputs are not supported for this block.

7-107

C280x/C2802x/C2803x/C28x3x Software Interrupt
Trigger

Dialog
Box

CPU interrupt number
Specify the interrupt to which the block responds. Interrupt
numbers are integers ranging from 1 to 12.

PIE interrupt number
Enter an integer value from 1 to 8 to set the Peripheral Interrupt
Expansion (PIE) interrupt number.

Trigger software interrupt when input value is greater than:
Sets the value above which the block posts an interrupt. Enter
the value for the level that indicates that the interrupt is asserted
by a requesting routine.

7-108

C280x/C2802x/C2803x/C28x3x Software Interrupt
Trigger

References For detailed information about interrupt processing, see TMS320x280x
DSP System Control and Interrupts Reference Guide, SPRU712B,
available at the Texas Instruments Web site.

See Also C280x/C2802x/C2803x/C28x3x Hardware Interrupt

7-109

C280x/C2802x/C2803x/C28x3x SPI Receive

Purpose Receive data via serial peripheral interface (SPI) on target

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, and “C28x3x (c2833xlib)” on page 6-10

Description The C280x/C28x3x SPI Receive supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode.

In master mode, the SPISIMO pin transmits data and the SPISOMI pin
receives data. When master mode is selected, the SPI initiates the data
transfer by sending a serial clock signal (SPICLK), which is used for the
entire serial communications link. Data transfers are synchronized to
this SPICLK, which enables both master and slave to send and receive
data simultaneously. The maximum for the clock is one quarter of the
DSP controller’s clock frequency.

For any given model, you can have only one C280x/C28x3x SPI Receive
block per module. There are two modules, A and B, which can be
configured through the F2808 eZdsp Target Preferences block.

Note Many SPI-specific settings are in the DSPBoard section of the
Target Preferences block. You should verify that these settings are
correct for your application.

7-110

C280x/C2802x/C2803x/C28x3x SPI Receive

Dialog
Box

Select module
Select the SPI module to be used for communications. Each
processor has a different number of modules.

Data length
Specify how many uint16s are expected to be received. Select
1 through 16.

Enable blocking mode
If this option is selected, system waits until data is received before
continuing processing.

Output receive error status
When this field is checked, the C280x/C28x3x SPI Receive block
adds another output port for the transaction status, and appears
as shown in the following figure.

7-111

C280x/C2802x/C2803x/C28x3x SPI Receive

Error status may be one of the following values:

• 0: No errors

• 1: Data loss occurred, (Overrun: when FIFO disabled, Overflow
when FIFO enabled)

• 2: Data not ready, a time out occurred while the block was
waiting to receive data

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data is received.

Sample time
Sample time, Ts, for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, check the
Post interrupt when message is received box, and refer to
“Asynchronous Interrupt Processing” on page 1-11 for a discussion
of block placement and other necessary settings.

See Also C280x/C2802x/C2803x/C28x3x SPI Transmit,
C280x/C2802x/C2803x/C28x3x Hardware Interrupt

7-112

C280x/C2802x/C2803x/C28x3x SPI Transmit

Purpose Transmit data via serial peripheral interface (SPI) to host

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, and “C28x3x (c2833xlib)” on page 6-10

Description The C280x/C28x3x SPI Transmit supports synchronous, serial
peripheral input/output port communications between the DSP
controller and external peripherals or other controllers. The block can
run in either slave or master mode. In master mode, the SPISIMO pin
transmits data and the SPISOMI pin receives data. When master mode
is selected, the SPI initiates the data transfer by sending a serial clock
signal (SPICLK), which is used for the entire serial communications
link. Data transfers are synchronized to this SPICLK, which enables
both master and slave to send and receive data simultaneously. The
maximum for the clock is one quarter of the DSP controller’s clock
frequency.

The sampling rate is inherited from the input port. The supported data
type is uint16.

Note For any given model, you can have only one C280x/C28x3x SPI
Transmit block per module. There are two modules, A and B, which can
be configured through the F2808 eZdsp Target Preferences block.

Many SPI-specific settings are in the DSPBoard section of the Target
Preferences block. You should verify that these settings are correct
for your application.

7-113

C280x/C2802x/C2803x/C28x3x SPI Transmit

Dialog
Box

Select module
Select the SPI module to be used for communications. Each
processor has a different number of modules.

Output transmit error status
When this field is checked, the C280x/C28x3x SPI Transmit block
adds another output port for the transaction status, and appears
as shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was transmitting data

7-114

C280x/C2802x/C2803x/C28x3x SPI Transmit

• 2: There is an error in the transmitted data (for example,
header or terminator don’t match, length of data expected is too
big or too small)

Enable blocking mode
If this option is selected, system waits until data is sent before
continuing processing.

Post interrupt when data is transmitted
Check this check box to post an asynchronous interrupt when
data is transmitted.

See Also C280x/C2802x/C2803x/C28x3x SPI Receive,
C280x/C2802x/C2803x/C28x3x Hardware Interrupt

7-115

C2802x/C2803x COMP

Purpose Compare two input voltages on comparator pins

Library “C2802x (c2802xlib)” on page 6-4 and “C2803x (c2803xlib)” on page 6-6

Description Configures the COMP to output a constant data from the comparator
pins on the DSP.

Dialog
Box

Comparator module
Select which comparator module the block configures. Use only
one block per module.

Comparator # output pin
Select the GPIO pin to use for the comparator output.

7-116

C2802x/C2803x COMP

Comparator source
Select Two external analog inputs to compare the voltage of
Input Pin A with Input Pin B. Select One external analog
inputs to compare the voltage of Input Pin A with the output of
a DAC reference located in the comparator. For more information,
see the “DAC Reference” section of the TMS320x2802x, 2803x
Piccolo Analog-to-Digital Converter (ADC) and Comparator.

The comparator source outputs 1 if Input Pin A has a value
greater than Input Pin B or the 10-bit DAC reference. Otherwise
it outputs 0.

Inverter circuit
Apply a logical NOT to the output of the comparator source. For
example, when the comparator source outputs 1, the inverter
circuit changes it to 0.

Synchronization select
Select Asynchronous to pass the asynchronous version of the
comparator output. Select Synchronous to pass the synchronous
version of the comparator output. Selecting Synchronous enables
the Qualification period option.

Qualification period
Qualify changes in the comparator output before passing
them along. The Passed through setting passes changes in
the comparator value along without qualifying them. The
consecutive clocks settings pass changes in the comparator
value along after receiving the specified number of consecutive
samples with the same value. Use this setting to prevent
intermittent and spurious changes in the comparator output.

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

References TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator, Literature Number: SPRUGE5, from the Texas
Instruments Web site.

7-117

C2802x/C2803x ADC

Purpose Configure ADC to sample analog pins and output digital data

Library “C2802x (c2802xlib)” on page 6-4 and “C2803x (c2803xlib)” on page 6-6

Description Configures the ADC to output a constant stream of data collected from
the ADC pins on the DSP.

7-118

C2802x/C2803x ADC

Dialog
Box

Sampling mode
Select Single sample mode to sample two signals sequentially.
Select Simultaneous sample mode to sample the two signals
with a minimal delay between the samples.

SOC trigger number
Identify the start-of-conversion trigger by number. In single
sampling mode, you can select an individual trigger. In
simultaneous sampling mode, you can select triggers in pairs.

7-119

C2802x/C2803x ADC

SOCx acquisition window
Define the length of the acquisition period, the acquisition
window, in sample cycles. The minimal value for this parameter is
7 cycles. For more information, see the “ADC Acquisition (Sample
and Hold) Window” section of the TMS320x2802x, 2803x Piccolo
Analog-to-Digital Converter (ADC) and Comparator Reference
Guide.

SOCx trigger source
Select one of the following input trigger for the start of conversion:

• Software

• CPU Timers 0/1/2 interrupts

• XINT2 SOC

• ePWM1-7 SOCA and SOCB

ADCINT will trigger SOCx
At the end of conversion, use the ADCINT1 or ADCINT2 interrupt to
trigger a start of conversion (SOC). This loop creates a continuous
sequence of conversions. The default selection, No ADCINT
disables this parameter.

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

Data type
Select the data type of the digital output data. You can choose
from the options double, single, int8, uint8, int16, uint16,
int32, and uint32.

Post interrupt at EOC trigger
Post interrupts when the ADC triggers EOC pulses. When
you select this option, the dialog box displays the Interrupt
selection and ADCINT# continuous mode options. For more
information, see the “EOC and Interrupt Operation” section of the
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator Reference Guide.

7-120

C2802x/C2803x ADC

Interrupt selection
Select which interrupt the ADC posts after triggering an EOC
pulse.

ADCINT1 continuous mode
ADCINT2 continuous mode

When the ADC generates an end of conversion (EOC) signal,
generate an ADCINT# interrupt whether the previous interrupt
flag has been acknowledged or not.

Input Channels — Conversion channel
Select the input channel to which this ADC conversion applies.

7-121

C2802x/C2803x ADC

References TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator, Literature Number: SPRUGE5, from the Texas
Instruments Web site.

7-122

C2802x/C2803x AnalogIO Input

Purpose Configure pin, sample time, and data type for analog input

Library “C2802x (c2802xlib)” on page 6-4 and “C2803x (c2803xlib)” on page 6-6

Description Use this block to sample the Analog IO input pins on the C2802x
processor for a positive voltage and output the results.

Dialog
Box

Parameters (Input pins)
Select the input pins to sample.

7-123

C2802x/C2803x AnalogIO Input

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

Data type
Select the data type of the digital output data. If you select auto,
the block automatically selects the correct data type for your
model. You can also manually select a data type. You can choose
from the options double, single, int8, uint8, int16, uint16,
int32, and uint32.

See Also C2802x/C2803x AnalogIO Output

7-124

C2802x/C2803x AnalogIO Output

Purpose Configure Analog IO to output analog signals on specific pins

Library “C2802x (c2802xlib)” on page 6-4 and “C2803x (c2803xlib)” on page 6-6

Description Configures the Analog IO output pins for the specified pins. In regular
mode, a value of True at the input of the block pulls the Analog IO
pin high. A value of False grounds the pin. In toggle mode, a value of
True at the input of the block switches the actual output level of the
Analog IO pin. A value of False does not affect on the output level of
the Analog IO pin.

Dialog
Box

7-125

C2802x/C2803x AnalogIO Output

Parameters (Output Pins)
Select the analog output pins that express the value of the digital
input on AIOx. Selecting Toggle inverts the output voltage
levels of the pins.

See Also C2802x/C2803x AnalogIO Input

7-126

C2802x/C2803x ePWM

Purpose Generate Enhanced Pulse Width Modulator (ePWM) waveforms

Library “C2802x (c2802xlib)” on page 6-4 and “C2803x (c2803xlib)” on page 6-6

Description Configures the Event Manager of the C2802x/C2803x DSP to generate
ePWM waveforms. A C2802x/C2803x system contains multiple
ePWM modules, each having two PWM outputs. You can use the
C2802x/C2803x ePWM block to configure up to four ePWM modules.

7-127

C2802x/C2803x ePWM

Dialog
Box

General Pane

7-128

C2802x/C2803x ePWM

Module
Specify which target ePWM module to use.

Timer period units
Specify the units of the Timer period or Timer initial period
as Clock cycles (the default) or Seconds. If you set Timer
period units to Seconds, the software must down-convert the
Timer period or Timer initial period, a double, for the period
register, a uint16. For best performance, select Clock cycles.
Doing so reduces calculations and rounding errors.

Note If you set Timer period units to Seconds, enable
support for floating-point numbers. In the model window,
select Simulation > Configuration Parameters. In the
Configuration Parameters dialog box, select Real-Time
Workshop > Interface. Under Software Environment, enable
floating-point numbers.

Timer period source
Configure the source of the timer period value. Selecting Specify
via dialog changes the following parameter to Timer period.
Selecting Input port changes the following parameter to Timer
initial period and creates a timer period input port, T, on the
block.

Timer period
Set the period of the PWM waveform in clock cycles or in seconds,
as determined by the Timer period units parameter. When
you enable HRMWM, you can enter a high-precision floating
point value. The Time-Base Period High Resolution Register
(TBPRDHR) stores the high-resolution portion of the timer period
value.

7-129

C2802x/C2803x ePWM

Note The term clock cycles refers to the Time-base Clock on
the C280x/C28x3x chip. See the discussion of the TB clock
prescaler divider for an explanation of how to calculate the
Time-base Clock speed.

Timer initial period
The period of the waveform from the time the PWM peripheral
starts operation until the ePWM input port, T, receives a new
value for the period. Use Timer period units to measure the
period in clock cycles or in seconds.

Note The term clock cycles refers to the Time-base Clock on
the C280x/C28x3x chip. See the discussion of the TB clock
prescaler divider for an explanation of how to calculate the
Time-base Clock speed.

Counting mode
Specify the counting mode in which to operate. C280x/C28x3x
PWMs can operate in three distinct counting modes: Up, Down,
and Up-Down. The Down option is not compatible with HRPWM.
To avoid generating an error, do not select Down when you enable
HRPWM (Period).

The following illustration shows the waveforms that correspond
to these three modes:

7-130

C2802x/C2803x ePWM

Sync output selection
This parameter corresponds to the SYNCOSEL field in the
Time-Base Control Register (TBCTL).

Use this parameter to specify the event that generates a
Time-base synchronization output signal, EPWMxSYNCO, from
the Time-base (TB) submodule.

The available choices are:

• EPWMxSYNCI or SWFSYNC — a Synchronization input pulse
or Software forced synchronization pulse, respectively. You
can use this option to achieve precise synchronization across
multiple ePWM modules by daisy chaining multiple the
Time-base (TB) submodules.

• CTR=Zero— Time-base counter equal to zero (TBCTR = 0x0000)

• CTR=CMPB — Time-base counter equal to counter-compare B
(TBCTR = CMPB)

• Disable— Disable the EPWMxSYNCO output (the default)

Add S/W sync input port
Create an input port, SYNC, for a Time-base synchronization
input signal, EPWMxSYNCI. You can use this option to achieve
precise synchronization across multiple ePWM modules by
daisy-chaining multiple the Time-base (TB) submodules. This
option is not compatible with HRPWM. Enabling HRPWM
disables this option.

7-131

C2802x/C2803x ePWM

Enable DCAEVT1 sync
Synchronize the ePWM time base to a DCAEVT1 digital compare
event. Use this feature to synchronize this PWM module to the
time base of another PWM module. Fine-tune the synchronization
between the two modules using the Phase offset value. This
option is not compatible with HRPWM. Enabling HRPWM
disables this option.

Enable DCBEVT1 sync
Synchronize the ePWM time base to a DCBEVT1 digital compare
event. Use this feature to synchronize this PWM module to the
time base of another PWM module. Fine-tune the synchronization
between the two modules using the Phase offset value. This
option is not compatible with HRPWM. Enabling HRPWM
disables this option.

Phase offset source
Specify the source of a phase offset to apply to the Time-base
synchronization input signal, EPWMxSYNCI from the SYNC
input port. Selecting Specify via dialog creates the Phase
offset value parameter. Selecting Input port creates a phase
input port, PHS, on the block. Selecting Disable, the default
value, prevents the software from applying phase offsets to the
TB module.

Counting direction after phase synchronization
This parameter appears when you set Counting Mode to
Up-Down and when you enable Phase offset source (set to
Specify via dialog or Input port). Configure the timer to
count up from zero, or down to zero, following synchronization.
This parameter corresponds to the PHSDIR field of the Time-base
Control Register (TBCTL).

Phase offset value
This field appears when you select Specify via dialog in
Phase offset source.

Configure the phase offset (delay) between the following events:

7-132

C2802x/C2803x ePWM

• The arrival of the Time-base synchronization input signal
(EPWMxSYNCI) on the SYNC input port

• The moment the Time-base (TB) submodule synchronizes the
ePWM module.

Note Enter the Phase offset value in TBCLK cycles, from 0 to
65535. Do not use fractional seconds.

This parameter corresponds to the Time-Base Phase Register
(TBPHS).

TB clock prescaler divider
Use the TB clock prescaler divider (CLKDIV) and the High
Speed TB clock prescaler divider (HSPCLKDIV) to configure
the ePWM time-base clock speed (TBCLK). Use the following
equation:

TBCLK = SYSCLKOUT/(HSPCLKDIV * CLKDIV)

For example, the default values of both CLKDIV and HSPCLKDIV
are 1, and the default frequency of SYSCLKOUT is 100 MHz, so:

TBCLK = 100 MHz = 100 MHz/(1 * 1)

The choices for the TB clock prescaler divider are: 1, 2, 4, 8,
16, 32, 64, and 128. Selecting Enable HRPWM (Period) forces
this option to 1.

The TB clock prescaler divider parameter corresponds to the
CLKDIV field of the Time-base Control Register (TBCTL).

7-133

C2802x/C2803x ePWM

Note The frequency of SYSCLKOUT depends on the oscillator
frequency and the configuration of PLL-based clock module.
Changing the values of the PLL Control Register (PLLCR) affects
the timing of all ePWM modules.

For more information, consult the “PLL-Based Clock Module”
section of the data manual for your specific target (see
“References” on page 7-64).

High Speed TB clock prescaler divider
See TB clock prescaler divider for an explanation of how to use
this value to setting the speed of the Time-base Clock. Choices
are to divide by 1, 2, 4, 6, 8, 10, 12, and 14. Selecting Enable
HRPWM (Period) forces this option to 1.

This parameter corresponds to the HSPCLKDIV field of the
Time-base Control Register (TBCTL).

Enable swap module A and B
Swap the ePWMA and ePWMB outputs. This option outputs the
ePWMA signals on the ePWMB outputs and the ePWMB signals
on the ePWMA outputs.

Enable HRPWM (Period)
When the effective resolution for conventionally generated PWM
is insufficient, consider using High Resolution PWM (HRPWM).
The resolution of PWM is normally dependent upon the PWM
frequency and the underlying system clock frequency. To address
this limitation, HRPWM uses Micro Edge Positioner (MEP)
technology to position edges more finely by dividing each coarse
system clock. The accuracy of the subdivision is on the order of
150ps. The following figure shows the relationship between one
system clock and edge position in terms of MEP steps:

7-134

C2802x/C2803x ePWM

Enable HRPWM mode and control it via the Extension Register
for HRPWM Period (TBPRDHR) register. When you enable this
parameter, you can enter an 8–bit floating point value in for the
Timer period parameter. This parameter enables the Enable
HRPWM (CMP) option, and displays the HRPWM loading
mode, HRPWM control mode, and HRPWM edge control
mode options. Also configure HRPWM control mode.

Selecting Enable HRPWM (Period) forces TB clock prescaler
divider and High Speed TB clock prescaler divider to 1.
These settings match the HRPWM time base clock with the
SYSCLKOUT frequency.

Enable HRPWM (CMP)
Enable HRPWM mode and control it via the Extension Register
for HRPWM Duty (CMPAHR) register. Also configure HRPWM
control mode.

HRPWM loading mode
Determine when to transfer the value of the CMPAHR shadow to
the active register:

• CTR=ZERO: Transfer the value when the time base counter
equals zero (TBCTR = 0x0000).

7-135

C2802x/C2803x ePWM

• CTR=PRD: Transfer the value when the time base counter
equals the period (TBCTR = TBPRD).

• CTR=Zero or CTR=PRD Transfer the value when either case
is true.

This option configures the HRLOAD “Shadow Mode Bit” in the
HRPWM Configuration Register (HRCNFG).

HRPWM control mode
Select which register controls the Micro Edge Positioner (MEP)
step size. The HRPWM control mode option configures the
CTLMODE “Control Mode Bits”.

• Duty control mode uses the Extension Register for HRPWM
Duty (CMPAHR) or the Extension Register for HRPWM Period
(TBPRDHR) to control the MEP edge position.

• Select Phase control mode to use the Time Base Period
High-Resolution Register (TBPRDHR) to control the MEP edge
position.

The HRPWM control mode option configures the CTLMODE
“Control Mode Bits” in the HRPWM Configuration Register
(HRCNFG).

HRPWM edge control mode
Swap the ePWMA and ePWMB outputs. This parameter sets the
SWAPAB field in the HRPWM Configuration Register (HRCNFG).

Use scale factor optimizer (SFO) software
Enable scale factor optimizing (SFO) software with HRPWM.
This software dynamically determines the appropriate scaling
factor for the Micro Edge Positioner (MEP) step size. The step size
varies depending on operating conditions such as temperature
and voltage. The SFO software reduces variability due to
these conditions. For more information, see the “Scale Factor
Optimizing Software (SFO)” section of the TMS320x2802x,
2803x Piccolo High Resolution Pulse Width Modulator (HRPWM)
Reference Guide, Literature Number: SPRUGE8.

7-136

C2802x/C2803x ePWM

Enable auto convert
Apply the scaling factor calculated by the SFO software to the
controlling period or duty cycle. (Use the HRPWM control mode
to select controlling period or duty cycle.) This parameter sets
the AUTOCONV field in the HRPWM Configuration Register
(HRCNFG).

ePWMA and ePWMB panes

Each ePWM module has two outputs, ePWMA and ePWMB. The
ePWMA output pane and ePWMB output pane have similar options.

7-137

C2802x/C2803x ePWM

Enable ePWMxA
Enable ePWMxB

Enables the ePWMA and/or ePWMB output signals for the ePWM
module identified on the General pane. By default, the software
enables ePWMxA and disables ePWMxB.

7-138

C2802x/C2803x ePWM

Note To Enable ePWMxA or Enable ePWMxB, also enable
support for floating-point numbers. In the model window,
select Tools > Real Time Workshop > Options. In the
Configuration Parameters dialog box, select Real-Time
Workshop > Interface. Under Software Environment, enable
floating-point numbers.

CMPA units
CMPB units

Specify the units used by the compare register: Percentages (the
default) or Clock cycles.

Notes

• The term clock cycles refers to the Time-base Clock on the
C280x/C28x3x chip. See TB clock prescaler divider for an
explanation of how to calculate the Time-base Clock speed.

• Percentages use additional computation time in generated code
and can decrease performance.

• If you set CMPA units or CMPB units to Percentages, also
enable support for floating-point numbers. In the model
window, select Simulation > Configuration Parameters. In
the Configuration Parameters dialog box, select Real-Time
Workshop > Interface. Under Software Environment,
enable floating-point numbers.

CMPA source
CMPB source

Specify the source of the pulse width value. If you select Specify
via dialog (the default), enter a value in the CMPA value or
CMPB value field. If you select Input port, set the value using

7-139

C2802x/C2803x ePWM

an input port, WA or WB, on the block. If you select Input port
also set CMPA initial value or CMPB initial value.

CMPA value
CMPB value

This field appears when you choose Specify via dialog in
CMPA source or CMPB source. Enter a value that specifies
the pulse width, in the units specified in CMPA units or CMPB
units.

CMPA initial value
CMPB initial value

This field appears when you set CMPA source or CMPB source
to Input port. Enter the initial pulse width of CMPA or CMPB
the PWM peripheral uses when it starts operation. Subsequent
inputs to the WA or WB ports change the CMPA or CMPB pulse
width.

Action when counter=ZERO
Action when counter=PRD
Action when counter=CMPA on CAU
Action when counter=CMPA on CAD
Action when counter=CMPB on CBU
Action when counter=CMPB on CBD

The dialog box displays or hides these parameters, depending on
the Counting mode selection (up, down, and up/down). These
settings, along with the other remaining settings in the ePWMA
output and ePWMB output panes, determine the behavior of
the Action Qualifier (AQ) submodule. Based on these settings, the
AQ module decides which events are converted into various action
types. This option produces the required switched waveforms of
the ePWMxA and ePWMxB output signals.

For each of these four fields, the available choices are Do nothing,
Clear, Set, and Toggle.

The default values for these fields vary between the ePWMA
output and ePWMB output panes.

7-140

C2802x/C2803x ePWM

The following table shows the defaults for each of these panes
when you set Counting mode to Up or Up-Down:

Action when
counter =...

ePWMA output
pane

ePWMB output
pane

ZERO Do nothing Do nothing

PRD Clear Set

CMPA on CAU Set Do nothing

CMPA on CAD Do nothing Do nothing

CMPB on CBU Do nothing Clear

CMPB on CBD Do nothing Do nothing

The following table shows the defaults for each of these panes
when you set Counting mode to Down:

Action when
counter =...

ePWMA output
pane

ePWMB output
pane

ZERO Do nothing Do nothing

PRD Clear Set

CMPA on CAD Do nothing Do nothing

CMPB on CBD Do nothing Do nothing

For a detailed discussion of the AQ submodule, consult the
TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide (SPRU791), available on the Texas Instruments
Web site.

7-141

C2802x/C2803x ePWM

Compare value reload condition
Enable continuous S/W force input port
Continuous S/W force logic
Reload condition for S/W force

These four settings determine how the AQ module handles the
S/W force event, an asynchronous event initiated by software
(CPU) via control register bits.

Compare value reload condition determines if and when to
reload the Action-qualifier S/W Force Register from a shadow
register. Choices are Load on CTR=Zero (the default), Load on
CTR=PRD, Load on either, and Freeze.

Add continuous S/W force input port creates an input port,
SFA, which you can use to control the software force logic. Send
one of the following values to SFA as an unsigned integer data
type:

• 0 = Forcing Disable: Do nothing. The default.

• 1 = Forcing Low: Clear low

• 2 = Forcing High: Set high

If you did not create the SFA input port, you can use Continuous
S/W force logic to select which type of software force logic to
apply. The choices are:

• Forcing Disable: Do nothing. The default.

• Forcing Low: Clear low

• Forcing High: Set high

Reload condition for S/W force — Choices are Zero (the
default), Period, Either period or zero, and Immediate.

Inverted version of ePWMxA
Only the ePWMB pane displays this option. Invert the ePWMxA
signal and output it on the ePWMxB outputs. This parameter

7-142

C2802x/C2803x ePWM

sets the SELOUTB field in the HRPWM Configuration Register
(HRCNFG).

Deadband Unit Pane

The Deadband unit pane lets you specify parameters for the
Dead-Band Generator (DB) submodule.

7-143

C2802x/C2803x ePWM

Use deadband for ePWMxA
Use deadband for ePWMxB

Enables a deadband area of no signal overlap between pairs of
ePWM output signals. This check box is cleared by default.

Enable half-cycle clocking
To double the deadband resolution, enable half-cycle clocking.
This option clocks the deadband counters at TBCLK*2. When you
disable this option, the deadband counters use full-cycle clocking
(TBCLK*1).

Deadband polarity
Configure the deadband polarity as AH (active high, the default),
AL (active low), AHC (active high complementary), or ALC (active
low complementary).

Deadband period source
Specify the source of the control logic. Choose Specify via
dialog (the default) to enter explicit values, or Input port to
use a value from the input port.

RED deadband period
This field appears only when you select Use deadband for
ePWMxA in the ePWMA output pane. Enter a value from 0 to
1023 to specify a rising edge delay.

FED deadband period
This field appears only when you select Use deadband for
ePWMxB in the ePWMB output pane. Enter a value from 0 to
1023 to specify a falling edge delay.

Event Trigger Pane

Configure ADC Start of Conversion (SOC) by one or both of the ePWMA
and ePWMB outputs.

7-144

C2802x/C2803x ePWM

Enable ADC start module A
When you select this option, ePWM starts the Analog-to-Digital
Conversion (ADC) for module A. By default, the software clears
(disables) this option.

Number of event for SOCA to be generated
When you select Enable ADC start module A, this field specifies
the number of the event that triggers ADC Start of Conversion for
Module A (SOCA): First event triggers ADC start of conversion
with every event (the default). Second event triggers ADC start

7-145

C2802x/C2803x ePWM

of conversion with every second event. Third event triggers ADC
start of conversion with every third event.

Module A counter match event condition
When you select Enable ADC start module A, this field
specifies the counter match condition that triggers an ADC start
of conversion (SOC) event. The choices are:

DCAEVT1 soc and DCBEVT1 soc
When the ePWM asserts a DCAEVT1 or DCBEVT1 digital
compare event. Use this feature to synchronize this PWM
module to the time base of another PWM module. Fine-tune the
synchronization between the two modules using the Phase offset
value.

CTR=Zero
When the ePWM counter reaches zero (the default).

CTR=PRD
When the ePWM counter reaches the period value.

CTR=Zero or CTR=PRD
When the time base counter equals zero (TBCTR = 0x0000) or
when the time base counter equals the period (TBCTR = TBPRD).

CTRU=CMPA
When the ePWM counter reaches the compare A value on the
way up.

CTRD=CMPA
When the ePWM counter reaches the compare A value on the
way down.

CTRU=CMPB
When the ePWM counter reaches the compare B value on the
way up.

CTRD=CMPB
When the ePWM counter reaches the compare B value on the
way down.

7-146

C2802x/C2803x ePWM

Enable ADC start module B
When you select this option, ePWM starts the Analog-to-Digital
Conversion (ADC) for module B. By default, the software clears
(disables) this option.

Number of event for SOCB to be generated
When you select Enable ADC start module B, this field
specifies the number of the event that triggers ADC start of
conversion: First event triggers ADC start of conversion with
every event (the default). Second event triggers ADC start of
conversion with every second event. Third event triggers ADC
start of conversion with every third event.

Module B counter match event condition
When you select Enable ADC start module B, this field
specifies the counter match condition that triggers an ADC start
of conversion event. The choices are the same as for Module A
counter match event condition.

Enable ePWM interrupt
Select this option to generate interrupts based on different events
defined by Number of event for interrupt to be generated
and Interrupt counter match event condition. By default,
the software clears (disables) this option.

Number of event for interrupt to be generated
When you select Enable ePWM interrupt, this field specifies the
number of the event that triggers the ePWM interrupt: First
event triggers ePWM interrupt with every event (the default).
Second event triggers ePWM interrupt with every second event.
Third event triggers ePWM interrupt with every third event.

Interrupt counter match event condition
When you select Enable ePWM interrupt, this field specifies
the counter match condition that triggers ePWM interrupt. The
choices are the same as for Module A counter match event
condition.

7-147

C2802x/C2803x ePWM

PWM Chopper Control Pane

The PWM chopper control pane lets you specify parameters
for the PWM-Chopper (PC) submodule. The PC submodule uses
a high-frequency carrier signal to modulate the PWM waveform
generated by the AQ and DB modules.

Chopper module enable
Select to enable the chopper module. Use of the chopper module is
optional, so this check box is cleared by default.

7-148

C2802x/C2803x ePWM

Chopper frequency divider
Set the prescaler value that determines the frequency of the
chopper clock. The system clock speed is divided by this value to
determine the chopper clock frequency. Choose an integer value
from 1 to8.

Chopper clock cycles width of first pulse
Choose an integer value from 1 to 16 to set the width of the first
pulse. Use this feature to provide a high-energy first pulse to
ensure hard and fast power switch turn on.

Chopper pulse duty cycle
The duty cycles of the second and subsequent pulses are also
programmable. Choices are 12.5%, 25%, 37.5%, 50%, 62.5%, 75%,
and 87.5%.

Trip Zone Unit Pane

The Trip Zone unit pane lets you specify parameters for the Trip-zone
(TZ) submodule. Each ePWM module receives six TZ signals (TZ1 to
TZ6) from the GPIO MUX. These signals indicate external fault or trip
conditions. Use the settings in this pane to program the EPWM outputs
to respond when faults occur.

7-149

C2802x/C2803x ePWM

Trip zone source
Specify the source of the control logic. Select Specify via
dialog (the default) to enable specific Trip-zone signals in the

7-150

C2802x/C2803x ePWM

block dialog. Choose Input port to enable specific Trip-zone
signals using a block input port, TZSEL.

If you select Input port, use the following bit operation to
determine the value of the 16-bit integer to send to the TZSEL:

TZSEL INPUT VALUE = (DCBEVT1*215 + DCAEVT1*214 + 0*213

+ 0*211 + OSHT3*210 + OSHT2*29 + OSHT1*28 + DCBEVT2*27

+ DCAEVT2*26 + 0*25 + 0*24 + 0*23 + CBC3*22 + CBC2*21 +
CBC1*20)

For example, to enable One Shot TZ1 (OSHT1) and Cyclic TZ1
(CBC1) as trip zone sources, set the value of OSHT1 and CBC1 to
“1” and leave the remaining values as “0”. This produces:

TZSEL INPUT VALUE = (1*28 + 1*20)

TZSEL INPUT VALUE = (256 + 1)

TZSEL INPUT VALUE = 257

When the block receives this value, it applies it to the TZSEL
register as a binary value: 100000001.

For more information, see the ”Trip-Zone Submodule Control and
Status Registers” section of the TMS320x28xx, 28xxx Enhanced
Pulse Width Modulator (ePWM) Module Reference Guide,
Literature Number: SPRU791 on www.ti.com

The trip zone source category includes trip-zone and digital
compare (DC) signals:

• Enable One-Shot TZ#

• Enable One-Shot DCAEVT1 or DCBEVT1

• Enable Cyclic TZ#

• Enable Cyclic DCAEVT2 or DCBEVT2

7-151

C2802x/C2803x ePWM

Enable One-Shot TZ#
Enable a Trip-zone signal in One-Shot Mode. When the trip event
happens, the software immediately performs the respective action
on the EPWMxA/B output. The condition remains latched until
you clear it under software control.

Enable One-Shot DCAEVT1 or DCBEVT1
Select any of these check boxes to enable the corresponding digital
compare event in One-Shot Mode. In this mode, when the digital
compare event occurs (DCAEVT1 or DCBEVT1), the software
immediately performs the respective action on the EPWMxA/B
output. The condition remains latched until you clear it under
software control.

Enable Cyclic TZ#
Select any of these check boxes to enable the corresponding
Trip-zone signal in Cycle-by-Cycle Mode. In this mode, when
the trip event is active, the software immediately performs the
respective action on the EPWMxA/B output. In Cycle-by-Cycle
Mode, the condition clears automatically when the PWM Counter
reaches zero. Therefore, in Cycle-by-Cycle Mode, the trip event
clears or resets with every PWM cycle.

Enable Cyclic DCAEVT2 or DCBEVT2
Select any of these check boxes to enable the corresponding digital
compare event in Cycle-by-Cycle Mode. In this mode, when
the digital compare event occurs (DCAEVT2 or DCBEVT2) ,
the software immediately performs the respective action on the
EPWMxA/B output. In Cycle-by-Cycle Mode, the condition clears
automatically when the PWM Counter reaches zero. Therefore,
in Cycle-by-Cycle Mode, the trip event clears or resets with every
PWM cycle.

Enable OST Interrupt
Generate an interrupt when the one shot (OST) triggering event
occurs.

7-152

C2802x/C2803x ePWM

Enable CBC Interrupt
Generate an interrupt when the cyclic or cycle-by-cycle (CBC)
triggering event occurs.

DCAEVT1, DCBEVT1, DCAEVT2, or DCBEVT2 Interrupt
Generate an interrupt when the specified triggering digital
compare event occurs.

ePWMxA forced to
ePWMxB forced to

Upon a fault condition, override the ePWMxA and/or ePWMxB
output and force it to one of the following: High, Low, or Hi-Z
(High Impedance). Select No action, the default value, to
disable this feature.

Digital Compare

Use the Digital Compare pane to configure the Digital Compare (DC)
submodule.

Each digital compare (DC) submodule receives three TZ signals (TZ1 to
TZ3) from the GPIO MUX, and three COMP signals from the COMP.
These signals indicate fault or trip conditions that are external to the
PWM submodule. Use the settings in this pane to output specific DC
events in response to those external signals. These DC events feed
directly into the Time-base, Trip-zone, and Event-trigger submodules.

For more information, see the “Digital Compare (DC) Submodule”
section of the TMS320x2802x, 2803x Piccolo Enhanced Pulse Width
Modulator (ePWM) Module Reference Guide, Literature Number:
SPRUGE9.

7-153

C2802x/C2803x ePWM

DCAH, DCBH
If the TZ or COMP event you select occurs, assert a high signal.
Qualify this signal using the Generate DCAEVT#, Generate
DCBEVT# options.

DCAL, DCBL
If the TZ or COMP event you select occurs, assert a low signal.
Qualify this signal using the Generate DCAEVT#, Generate
DCBEVT# options.

Generate DCAEVT#, Generate DCBEVT#
Qualify the signals that generate DC events, such as DCAEVT#
or DCBEVT#. Select the states of DCAH, DCBH, DCAL, and
DCBL that generate the event. To disable this feature, choose the
Event disabled option.

DCAEVT# source select, DCBEVT# source select
This parameter controls two separate aspects of triggering DC
events:

7-154

C2802x/C2803x ePWM

• Triggering filtered or unfiltered DC event. (Configures
DCACTL[EVT1SRCSEL] or DCACTL[EVT2SRCSEL].)

• Trigger the DC event synchronously or asynchronously.
(Configures DCACTL[EVT1FRCSYNCSEL] or
DCACTL[EVT2FRCSYNCSEL].)

Filtering

• Options that begin with DCAEVT# or DCAEVT# do not apply
filtering to DC events. Qualified signals trigger DC events.

• Options that begin with DCEVTFILT apply filtering to DC
events. Qualified signals pass through filtering circuits before
triggering DC events. This filtering is not configurable in
the ePWM block. For more information, refer to the “Event
Filtering” section of the the TMS320x2802x, 2803x Piccolo
Enhanced Pulse Width Modulator (ePWM) Module Reference
Guide, Literature Number: SPRUGE9.

Synchronizing

• Options that end with async trigger DC events asynchronously.
When the qualified or filtered signals exist, the DC submodule
triggers the DC event immediately.

• Options that end with sync trigger DC events synchronously.
Once the qualified or filtered signals exist, the DC submodule
triggers the DC event in sync with the TBCLK signal.

References For more information, consult the following references, available at
the Texas Instruments Web site:

• TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator
(ePWM) Module Reference Guide, literature number SPRUGE9

• TMS320x2802x, 2803x Piccolo High Resolution Pulse Width
Modulator (HRPWM) Reference Guide, literature number SPRUGE8

7-155

C2802x/C2803x ePWM

• Using the ePWM Module for 0% - 100% Duty Cycle Control
Application Report, literature number SPRU791

• Configuring Source of Multiple ePWM Trip-Zone Events, literature
number SPRAAR4

• TMS320F2809, TMS320F2808, TMS320F2806 TMS320F2802,
TMS320F2801 TMS320C2802, TMS320C2801, and TMS320F2801x
DSPs Data Manual, literature number SPRS230

7-156

C281x ADC

Purpose Analog-to-digital converter (ADC)

Library “C281x (c281xlib)” on page 6-8

Description The C281x ADC block configures the C281x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Triggering

The C281x ADC trigger mode depends on the internal setting of the
source start-of-conversion (SOC) signal. In unsynchronized mode the
ADC is usually triggered by software at the sample time intervals
specified in the ADC block. For more information on configuring the
specific parameters for this mode, see “Configuring Acquisition Window
Width for ADC Blocks”.

In synchronized mode, the Event (EV) Manager associated with the
same module as the ADC triggers the ADC. In this case, the ADC
is synchronized with the pulse width modulator (PWM) waveforms
generated by the same EV unit via the ADC Start Event signal
setting. The ADC Start Event is set in the C281x PWM block. See
that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

Output

The output of the C281x ADC is a vector of uint16 values. The output
values are in the range 0 to 4095 because the C281x ADC is 12-bit
converter.

7-157

C281x ADC

Modes

The C281x ADC block supports ADC operation in dual and cascaded
modes. In dual mode, either module A or module B can be used for the
ADC block, and two ADC blocks are allowed in the model. In cascaded
mode, both module A and module B are used for a single ADC block.

Dialog
Box

ADC Control Pane

Module
Specify which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0
through ADCINA7).

• B — Displays the ADC channels in module B (ADCINB0
through ADCINB7).

7-158

C281x ADC

• A and B — Displays the ADC channels in both modules A
and B (ADCINA0 through ADCINA7 and ADCINB0 through
ADCINB7)

Then, use the check boxes to select the desired ADC channels.

Conversion mode
Type of sampling to use for the signals:

• Sequential— Samples the selected channels sequentially

• Simultaneous — Samples the corresponding channels of
modules A and B at the same time

Start of conversion
Specify the type of signal that triggers the conversion:

• Software — Signal from software

• EVA— Signal from Event Manager A (only for Module A)

• EVB— Signal from Event Manager B (only for Module B)

• External — Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-10 for more information on timing. To
execute this block asynchronously, set Sample Time to -1, check
the Post interrupt at the end of conversion box, and refer to
“Asynchronous Interrupt Processing” on page 1-11 for a discussion
of block placement and other necessary settings.

To set different sample times for different groups of ADC
channels, you must add separate C281x ADC blocks to your model
and set the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

7-159

C281x ADC

Post interrupt at the end of conversion
Check this check box to post an asynchronous interrupt at the
end of each conversion. The interrupt is always posted at the
end of conversion.

Input Channels Pane

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

7-160

C281x ADC

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also C281x PWM, C281x Hardware Interrupt

7-161

C281x CAP

Purpose Receive and log capture input pin transitions

Library “C281x (c281xlib)” on page 6-8

Description The C281x CAP block sets parameters for the capture units (CAPs) of
the Event Manager (EV) module. The capture units log transitions
detected on the capture unit pins by recording the times of these
transitions into a two-level deep FIFO stack. You can set the capture
unit pins to detect rising edge, falling edge, either type of transition,
or no transition.

The C281x chip has six capture units — three associated with each
EV module. Capture units 1, 2, and 3 are associated with EVA and
capture units 4, 5, and 6 are associated with EVB. Each capture unit is
associated with a capture input pin.

Each group of EV module capture units can use one of two
general-purpose (GP) timers on the target board. EVA capture units
can use GP timer 1 or 2. EVB capture units can use GP timer 3 or 4.
When a transition occurs, the module stores the value of the selected
timer in the two-level deep FIFO stack.

The C281x CAP module shares GP Timers with other C281 blocks. For
more information and guidance on sharing timers, see “Sharing General
Purpose Timers between C281x Peripherals” on page 1-16.

Note You can have up to two C281x CAP blocks in any one model—one
block for each EV module.

Outputs

This block has up to two outputs: a cnt (count) output and an optional,
FIFO status flag output. The cnt output increments each time a
transition of the selected type occurs. The status flag outputs are

7-162

C281x CAP

• 0 — The FIFO is empty. Either no captures have occurred or the
previously stored captures have been read from the stack. (The
binary version of this flag is 00.)

• 1 — The FIFO has one entry in the top register of the stack. (The
binary version of this flag is 01.)

• 2 — The FIFO has two entries in the stack registers. (The binary
version of this flag is 10.)

• 3— The FIFO has two entries in the stack registers and one or more
captured values have been lost. This occurs because another capture
occurred before the FIFO stack was read. The new value is placed in
the bottom register. The bottom register value is pushed to the top of
the stack and the top value is pushed out of the stack. (The binary
version of this flag is 11.)

Dialog
Box

Data Format Pane

7-163

C281x CAP

Module
Select the Event Manager (EV) module to use:

• A — Use CAPs 1, 2, and 3.

• B — Use CAPs 4, 5, and 6.

Output overrun status flag
Select to output the status of the elements in the FIFO. The data
type of the status flag is uint16.

Send data format
The type of data to output:

• Send 2 elements (FIFO Buffer) — Sends the latest two
values. The output is updated when there are two elements
in the FIFO, which is indicated by bit 13 or 11 or 9 being
sent (CAP x FIFO). If the CAP is polled when fewer than two
elements are captures, old values are repeated. The CAP
registers are read as follows:

1 The CAP x FIFO status bits are read and the value is stored
in the status flag.

2 The top value of the FIFO is read and stored in the output
at index 0.

3 The new top value of the FIFO (the previously stored bottom
stack value) is read and stored in the output at index 1.

• Send 1 element (oldest)— Sends the older of the two most
recent values. The output is updated when there is at least
one element in the FIFO, which is indicated by any of the bits
13:12, or 11:10, or 9:8 being sent. The CAP registers are read
as follows:

4 The CAP x FIFO status bits are read and the value is stored
in the status flag.

5 The top value of the FIFO is read and stored in the output.

• Send 1 element (latest) — Sends the most recent value.
The output is updated when there is at least one element in the

7-164

C281x CAP

FIFO, which is indicated by any of the bits 13:12, or 11:10, or
9:8 being sent. The CAP registers are read as follows:

6 The CAP x FIFO status bits are read and the value is stored
in the status flag.

7 If there are two entries in the FIFO, the bottom value is read
and stored in the output. If there is only one entry in the
FIFO, the top value is read and stored in the output.

Sample time
Time between outputs from the FIFO. If new data is not available,
the previous data is sent.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean.
The auto option uses the data type of a connected block that
outputs data to this block. If this block does not receive any input,
auto sets the data type to double.

Note The output of the C281x CAP block can be vectorized.

7-165

C281x CAP

CAP Panes

The CAP panes set parameters for individual CAPs. The particular
CAP affected by a CAP pane depends on the EV module you selected:

• CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.

• CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.

• CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP
Select to use the specified capture unit pin.

7-166

C281x CAP

Edge Detection
Type of transition detection to use for this CAP. Available
types are Rising Edge, Falling Edge, Both Edges, and No
transition.

Time Base
Select which target board GP timer the CAP uses as a time base.
CAPs 1, 2, and 3 can use Timer 1 or Timer 2. CAPs 4, 5, and 6
can use Timer 3 or Timer 4.

Clock source
This option is available only for the CAP 3 pane. You can select
Internal to use the internal time base. Also configure the
Counting mode, Timer prescaler, and Timer period source
for the internal time base.

Select QEP circuit to generate the input clock from the
quadrature encoder pulse (QEP) submodule.

Counting mode
Select Up to generate an asymmetrical waveform output, or
Up-down to generate a symmetrical waveform output, as shown in
the following illustration.

7-167

C281x CAP

When you specify the Counting mode as Up (asymmetric) the
waveform:

• Starts low

• Goes high when the rising period counter value matches the
Compare value

• Goes low at the end of the period

When you specify the Counting mode as Up-down (symmetric)
the waveform:

• Starts low

• Goes high when the increasing period counter value matches
the Compare value

7-168

C281x CAP

• Goes low when the decreasing period counter value matches
the Compare value

Counting mode becomes unavailable when you set Clock
source to QEP circuit.

Timer Prescaler
Clock divider factor by which to prescale the selected GP timer
to produce the desired timer counting rate. Available options are
none, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. The following
table shows the rates that result from selecting each option.

Scaling Resulting Rate (µs)

none 0.01334

1/2 0.02668

1/4 0.05336

1/8 0.10672

1/16 0.21344

1/32 0.42688

1/64 0.85376

1/128 1.70752

Note These rates assume a 75-MHz input clock.

Timer period source
Select Specify via dialog to enable the Timer period
parameter. Select Input port to create a block input, T1, that
accepts the timer period value.

Timer period
Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The value defaults to 65535.

7-169

C281x CAP

If you know the length of a clock cycle, you can easily calculate
how many clock cycles to set for the timer period. The following
calculation determines the length of one clock cycle:

Sysclk MHz HISPCLK InputClock escaler() (/) Pr (/)150 1 2 1 128→ →

In this calculation, you divide the System clock frequency of 150
MHz by the high-speed clock prescaler of 2. Then, you divide the
resulting value by the timer control input clock prescaler, 128.
The resulting frequency is 0.586 MHz. Thus, one clock cycle is
1/.586MHz, which is 1.706 µs.

Post interrupt on CAP
Check this check box to post an asynchronous interrupt on CAP.

See Also

C281x Hardware Interrupt

7-170

C281x eCAN Receive

Purpose Enhanced Control Area Network receive mailbox

Library “C281x (c281xlib)” on page 6-8

Description Use the C281x enhanced Control Area Network (eCAN) Receive block to
receive eCAN messages through an eCAN mailbox. The eCAN module
on the DSP chip provides serial communication capability and has 32
mailboxes configurable for receive or transmit. The C281x supports
eCAN data frames in standard or extended format.

The C281x eCAN Receive block has up to three output ports.

• f0 outputs a function call when the block receives a new message.
Connect a function call subsystem to this port.

• Msg outputs the message data as a vector. The vector is always 8
bytes long. Use Data type to and is composed of elements of the
data type.

• len outputs the length of the eCAN message. Select Output
message length to create this output.

To use the eCAN Receive block with the eCAN Pack block in the
canmsglib, set Data type to CAN_MESSAGE_TYPE.

7-171

C281x eCAN Receive

Dialog
Box

Mailbox number
Unique number between 0 and 15 for standard or between 0 and
31 for enhanced CAN mode. It refers to a mailbox area in RAM.
In standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively,
to convert the entry. The message identifier is associated with a

7-172

C281x eCAN Receive

receive mailbox. Only messages that match the mailbox message
identifier are accepted into it.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if
a new message has been received. A new message causes a
function call to be emitted from the mailbox. If you want to
update the message output only when a new message arrives,
then the block needs to be executed asynchronously. To execute
this block asynchronously, set Sample Time to -1, check the
Post interrupt when message is received box, and refer to
“Asynchronous Interrupt Processing” on page 1-11 for a discussion
of block placement and other necessary settings.

Note For information about setting the timing parameters of
the CAN module, see “Configuring Timing Parameters for CAN
Blocks”.

Data type
Select one of the following options:

• uint16 (vector length = 4 elements)

• uint32 (vector length = 2 elements)

• CAN_MESSAGE_TYPE (Select this option to use the eCAN receive
block with the CAN Unpack block.)

The length of the vector for the received message is at most 8
bytes. If the message is less than 8 bytes, the data buffer bytes
are right-aligned in the output. The data are unpacked as follows
using the data buffer, which is 8 bytes.

7-173

C281x eCAN Receive

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes:

data_buffer[0] = 0x21
data_buffer[1] = 0x43

The uint16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

When you select CAN_MESSAGE_TYPE, the block outputs the
following struct data (defined in can_message.h):

struct {

/* Is Extended frame */
uint8_T Extended;

/* Length */
uint8_T Length;

/* RTR */
uint8_T Remote;

7-174

C281x eCAN Receive

/* Error */
uint8_T Error;

/* CAN ID */
uint32_T ID;

/*
TIMESTAMP_NOT_REQUIRED is a macro that will be defined by T
PIL, C166, FM5, xPC if they do not require the timestamp f
generation. By default, timestamp is defined. If the targe
the timestamp field, they should define the macro TIMESTAM
including this header file for code generation.
*/
#ifndef TIMESTAMP_NOT_REQUIRED

/* Timestamp */
double Timestamp;

#endif

/* Data field */
uint8_T Data[8];

};

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Check this check box to post an asynchronous interrupt when a
message is received.

References For detailed information on the eCAN module, see TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature
Number SPRU074A, available at the Texas Instruments Web site.

See Also C281x eCAN Transmit, C281x Hardware Interrupt

7-175

C281x eCAN Transmit

Purpose Enhanced Control Area Network transmit mailbox

Library “C281x (c281xlib)” on page 6-8

Description The C281x enhanced Control Area Network (eCAN) Transmit block
generates source code for transmitting eCAN messages through an
eCAN mailbox. The eCAN module on the DSP chip provides serial
communication capability and has 32 mailboxes configurable for receive
or transmit. The C28x supports eCAN data frames in standard or
extended format.

Note Fixed-point inputs are not supported for this block.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always right-aligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 2
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-176

C281x eCAN Transmit

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-177

C281x eCAN Transmit

Dialog
Box

Mailbox number
Unique number between 0 and 15 for standard or between 0 and
31 for enhanced CAN mode. It refers to a mailbox area in RAM.
In standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

7-178

C281x eCAN Transmit

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If cleared, the CAN block code does not wait
for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

Post interrupt when message is transmitted
If selected, an asynchronous interrupt is posted when data is
transmitted.

Note For information about setting the timing parameters of the CAN
module, see “Configuring Timing Parameters for CAN Blocks”.

References For detailed information on the eCAN module, see TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature
Number SPRU074A, available at the Texas Instruments Web site.

See Also C281x eCAN Receive

7-179

C281x GPIO Digital Input

Purpose General-purpose I/O pins for digital input

Library “C281x (c281xlib)” on page 6-8

Description This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital input. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Note To avoid losing any new settings, click Apply before changing the
IO Port parameter.

7-180

C281x GPIO Digital Input

Dialog
Box

7-181

C281x GPIO Digital Input

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable
for digital input. (There is no GPIOPC port on the C281x.) If you
select multiple bits, vector input is expected. Cleared bits are
available for peripheral functionality. Multiple GPIO DI blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path
to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral
function cannot be used.

The following tables show the shared pins.

GPIO A MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

7-182

C281x GPIO Digital Input

GPIO B MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

Sample time
Time interval, in seconds, between consecutive input from the
pins.

Data type
Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type.
Valid data types are auto, double, single, int8, uint8, int16,
uint16, int32, uint32 or boolean.

Note The width of the vectorized data output by this block
is determined by the number of bits selected in the Block
Parameters dialog box.

See Also C281x GPIO Digital Output

7-183

C281x GPIO Digital Output

Purpose General-purpose I/O pins for digital output

Library “C281x (c281xlib)” on page 6-8

Description This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital output. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Note Fixed-point inputs are not supported for this block.

Note To avoid losing any new settings, click Apply before changing the
IO Port parameter.

7-184

C281x GPIO Digital Output

Dialog
Box

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable

7-185

C281x GPIO Digital Output

for digital input. (There is no GPIOPC port on the C281x.) If you
select multiple bits, vector input is expected. Cleared bits are
available for peripheral functionality. Multiple GPIO DO blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path
to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral
function cannot be used.

The following tables show the shared pins.

GPIO A MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

7-186

C281x GPIO Digital Output

GPIO B MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

See Also C281x GPIO Digital Input

7-187

C281x PWM

Purpose Pulse width modulators (PWMs)

Library “C281x (c281xlib)” on page 6-8

Description F2812 DSPs include a suite of pulse width modulators (PWMs) used
to generate various signals. This block provides options to set the A
or B module Event Managers to generate the waveforms you require.
The twelve PWMs are configured in six pairs, with three pairs in each
module.

The C281x PWM module shares GP Timers with other C281 blocks. For
more information and guidance on sharing timers, see “Sharing General
Purpose Timers between C281x Peripherals” on page 1-16.

Note All inputs to the C281x PWM block must be scalar values.

7-188

C281x PWM

Dialog
Box

Timer Pane

Module
Specify which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2,
PWM3/PWM4, and PWM5/PWM6).

• B — Displays the PWMs in module B (PWM7/PWM8,
PWM9/PWM10, and PWM11/PWM12).

Note PWMs in module A use Event Manager A, Timer 1, and
PWMs in module B use Event Manager B, Timer 3.

7-189

C281x PWM

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value inWaveform period or
select Input port to use a value from the input port.

Note All inputs to the C281x PWM block must be scalar values.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral
clock on the F2812 chip. This clock is 75 MHz by default because
the high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Waveform type (counting mode)
Type of waveform to be generated by the PWM pair. The F2812
PWMs can generate two types of waveforms: Asymmetric(Up)
and Symmetric(Up-down). The following illustration shows the
difference between the two types of waveforms.

7-190

C281x PWM

Waveform period units
Units in which to measure the waveform period. Options are
Clock cycles, which refer to the high-speed peripheral clock
on the F2812 chip (75 MHz), or Seconds. Changing these units
changes the Waveform period value and the Duty cycle value
and Duty cycle units selection.

Timer prescaler
Divide the clock input to produce the desired timer counting rate.

7-191

C281x PWM

Outputs Pane

Enable PWM#/PWM#
Check to activate the PWM pair. PWM1/PWM2 are activated
via the Output 1 pane, PWM3/PWM4 are on Output 2, and
PWM5/PWM6 are on Output 3.

Duty cycle source
Select Specify via dialog to use the dialog box to enter a Duty
cycle value for the pair of PWM outputs. Select Input port to
use the input port, W#, to enter a Duty cycle value for the pair
of PWM outputs.

The input portW1 corresponds to PWM1/PWM2. W2 corresponds
to PWM3/PWM4. W3 corresponds to PWM5/6.

7-192

C281x PWM

Note All inputs to the C281x PWM block must be scalar values.

Duty cycle
Set the ratio of the PWM waveform pulse duration to the PWM
Waveform period.

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and
Percentages. Changing these units changes the Duty cycle
value, and the Waveform period value andWaveform period
units selection.

Note Using percentages can cause some additional computation
time in generated code. This may or may not be noticeable in
your application.

7-193

C281x PWM

Logic Pane

Control logic source
Configure the control logic for all PWMs enabled on the Outputs
tab. Valid settings are Specify via dialog (default setting) or
to Input port.

Specify via Dialog enables PWM control logic settings for
each PWM output:

• Forced high causes the pulse value to be high.

Active high causes the pulse value to go from low to high.

Active low causes the pulse value to go from high to low.

Forced low causes the pulse value to be low.

7-194

C281x PWM

Input port adds an input port to the PWM block for setting the
C2000 ACTRx register. Each PWM uses 2 bits to set the following
options:

• 00 Forced Low

• 01 Active Low

• 10 Active High

• 11 Forced High

Bits 11–0 of the 16–bit Compare Action Control Registers for
module A control PWM1-6

Bits 11–0 of the 16–bit Compare Action Control Registers for
module B control PWM1-6

For example: If a decimal value of 3222 is read at the input port
while using PWM module A, the following PWM settings will be
honored:

3222 = 0C96h = 110010010110b

So that:

• PW1: Active High

• PW2: Active Low

• PW3: Active Low

• PW4: Active High

• PW5: Forced Low

• PW6: Forced High

For more information, see the section on Compare Action Control
Registers (ACTRA and ACTRB) in the Texas Instruments™
document “TMS320x281x DSP Event Manager (EV) Reference
Guide”, literature number SPRU065.

7-195

C281x PWM

Deadband Pane

Use deadband for PWM#/PWM#
Enables a deadband area of no signal overlap at the beginning
of particular PWM pair signals. The following figure shows the
deadband area.

7-196

C281x PWM

Deadband prescaler
Number of clock cycles, which, when multiplied by the Deadband
period, determines the size of the deadband. Selectable values
are 1, 2, 4, 8, 16, and 32.

Deadband period source
Source from which the deadband period is obtained. Select
Specify via dialog to enter the values in the Deadband
period field or select Input port to use a value, in clock cycles,
from the input port.

Note All inputs to the C281x PWM block must be scalar values.

Deadband period
Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from
1 to 15.

7-197

C281x PWM

ADC Control Pane

ADC start event
Controls whether this PWM and ADC associated with the same
EV module are synchronized. Select None for no synchronization
or select an event to generate the source start-of-conversion (SOC)
signal for the associated ADC.

• None — The ADC and PWM are not synchronized. The EV
does not generate an SOC signal and the ADC is triggered by

7-198

C281x PWM

software (that is, the A/D conversion occurs when the ADC
block is executed in the software).

• Underflow interrupt— The EV generates an SOC signal for
the ADC associated with the same EV module when the board’s
general-purpose (GP) timer counter reaches a hexadecimal
value of FFFF.

• Period interrupt— The EV generates an SOC signal for the
ADC associated with the same EV module when the value in GP
timer matches the value in the period register. The value set in
Waveform period above determines the value in the register.

Note If you select Period interrupt and specify a sampling
time less than the specified (Waveform period)/(Event timer
clock speed), zero-order hold interpolation will occur. (For
example, if you enter 64000 as the waveform period, the period
for the timer is 64000/75 MHz = 8.5333e-004. If you enter a
Sample time in the C281x ADC dialog box that is less than
this result, it will cause zero-order hold interpolation.)

• Compare interrupt— The EV generates an SOC signal for the
ADC associated with the same EV module when the value in the
GP timer matches the value in the compare register. The value
set in Duty cycle above determines the value in the register.

See Also C281x ADC

7-199

C281x QEP

Purpose Quadrature encoder pulse circuit

Library “C281x (c281xlib)” on page 6-8

Description Each F2812 Event Manager has three capture units, which can log
transitions on its capture unit pins. Event Manager A (EVA) uses
capture units 1, 2, and 3. Event Manager B (EVB) uses capture units
4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts
quadrature encoded input pulses on these capture unit pins. QEP
pulses are two sequences of pulses with varying frequency and a fixed
phase shift of 90 degrees (or one-quarter of a period). The circuit counts
both edges of the QEP pulses, so the frequency of the QEP clock is four
times the input sequence frequency.

The QEP, in combination with an optical encoder, is useful for obtaining
speed and position information from a rotating machine. Logic in the
QEP circuit determines the direction of rotation by which sequence is
leading. For module A, if the QEP1 sequence leads, the general-purpose
(GP) Timer counts up and if the QEP2 sequence leads, the timer counts
down. The pulse count and frequency determine the angular position
and speed.

The C281x QEP module shares GP Timers with other C281 blocks. For
more information and guidance on sharing timers, see “Sharing General
Purpose Timers between C281x Peripherals” on page 1-16.

7-200

C281x QEP

Dialog
Box

Module
Specify which QEP pins to use:

• A — Uses QEP1 and QEP2 pins.

7-201

C281x QEP

• B — Uses QEP3 and QEP4 pins.

Counting mode
Specify how to count the QEP pulses:

• Counter — Count the pulses based on GP Timer 2 (or GP
Timer 4 for EVB).

• RPM — Count the rotations per minute.

Positive rotation
Defines whether to use Clockwise or Counterclockwise as the
direction to use as positive rotation. This field appears only if
you select RPM.

Initial count
Initial value for the counter. The value defaults to 0.

Encoder resolution (pulse/revolution)
Number of QEP pulses per revolution. This field appears only if
you select RPM.

Enable QEP index
Reset the QEP counter to zero when the QEP index input on
CAP3_QEPI1 transitions from low to high.

Enable index qualification mode
Qualify the QEP index input on CAP3_QEPI1. Ensure that the
levels on CAP1_QEP1 and CAP2_QEP2 are high before asserting
the index signal as valid.

Timer period
Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The value defaults to 65535.

If you know the length of a clock cycle, you can easily calculate
how many clock cycles to set for the timer period. The following
calculation determines the length of one clock cycle:

Sysclk MHz HISPCLK InputClock escaler() (/) Pr (/)150 1 2 1 128→ →

7-202

C281x QEP

In this calculation, you divide the System clock frequency of 150
MHz by the high-speed clock prescaler of 2. Then, you divide the
resulting value by the timer control input clock prescaler, 128.
The resulting frequency is 0.586 MHz. Thus, one clock cycle is
1/.586MHz, which is 1.706 µs.

Sample time
Time interval, in seconds, between consecutive reads from the
QEP pins.

Data type
Data type of the QEP pin data. The circuit reads the data as
16-bit data and then casts it to the selected data type. Valid data
types are auto, double, single, int8, uint8, int16, uint16,
int32, uint32 or boolean.

References For more information on the QEP module, consult the following
documents, available at the Texas Instruments Web site:

• TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse
(eQEP) Module Reference Guide, Literature Number SPRU790

• Using the Enhanced Quadrature Encoder Pulse (eQEP) Module in
TMS320x280x, 28xxx as a Dedicated Capture Application Report,
Literature Number SPRAAH1

7-203

C281x SCI Receive

Purpose Receive data on target via serial communications interface (SCI) from
host

Library “C281x (c281xlib)” on page 6-8

Description The C281x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals
in nonreturn-to-zero (NRZ) format. This block configures the C281x
DSP target to receive scalar or vector data from the COM port via the
C28x target’s COM port.

Note For any given model, you can have only one C281x SCI Receive
block per module. There are two modules, A and B, which can be
configured through the F2812 eZdsp Target Preferences block.

Many SCI-specific settings are in the DSPBoard section of the F2812
eZdsp Target Preferences block. You should verify that these settings
are correct for your application.

7-204

C281x SCI Receive

Dialog
Box

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count.

7-205

C281x SCI Receive

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are they
included in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Transmit block.

Data type
Data type of the output data. Available options are single, int8,
uint8, int16, uint16, int32, or uint32.

Data length
How many of Data type the block will receive (not bytes).
Anything more than 1 is a vector. The data length is inherited
from the input (the data length originally input to the host-side
SCI Transmit block).

Initial output
Default value from the C281x SCI Receive block. This value is
used, for example, if a connection time-out occurs and the Action
taken when connection timeout field is set to “Output the last
received value”, but nothing yet has been received.

7-206

C281x SCI Receive

Action taken when connection timeout
Specify what to output if a connection time-out occurs. If “Output
the last received value” is selected, the last received value is what
is output, unless none has been received yet, in which case the
Initial output is considered the last received value.

If you select "Output custom value", use the "Output value when
connection times out" field to set the custom value.

7-207

C281x SCI Receive

Sample time
Sample time, Ts, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Interrupt Processing” on page 1-11 for a discussion
of block placement and other necessary settings.

Output receiving status
When this field is checked, the C281x SCI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an error in the received data (checksum error)

• 3: SCI parity-error flag — Occurs when a character is received
with a mismatch between the number of 1s and its parity bit

• 4: SCI framing-error flag — Occurs when an expected stop bit
is not found

Enable receive FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action (for example,
read data as soon as it is received). If this option is cleared, the
block stays in polling mode. If the block is in polling mode and not
blocking, it checks the FIFO to see if there is data to read. If data
is present, it reads and outputs. If no data is present, it continues.
If the block is in polling mode and blocking, it waits until data is
available to read (when data length is reached).

7-208

C281x SCI Receive

Receive FIFO interrupt level
This parameter is enabled when the Enable receive FIFO
interrupt option is selected. Select an interrupt level from 0 to
16. The default level is 0.

References For detailed information on the SCI module, see TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C281x SCI Transmit, C281x Hardware Interrupt

7-209

C281x SCI Transmit

Purpose Transmit data from target via serial communications interface (SCI)
to host

Library “C281x (c281xlib)” on page 6-8

Description
The C281x SCI Transmit block transmits scalar or vector data in int8
or uint8 format from the C281x target’s COM ports in nonreturn-to-zero
(NRZ) format. You can specify how many of the six target COM ports to
use. The sampling rate and data type are inherited from the input port.
The data type of the input port must be one of the following: single,
int8, uint8, int16, uint16, int32, or uint32. If no data type is specified,
the default data type is uint8.

Note For any given model, you can have only one C281x SCI Transmit
block per module. There are two modules, A and B, which can be
configured through the F2812 eZdsp Target Preferences block.

Many SCI-specific settings are in the DSPBoard section of the F2812
eZdsp Target Preferences block. You should verify that these settings
are correct for your application.

Fixed-point inputs are not supported for this block.

7-210

C281x SCI Transmit

Dialog
Box

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the sent data
package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not sent nor are they included in
the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Receive block.

7-211

C281x SCI Transmit

Additional package terminator
This field specifies the data located at the end of the sent
data package, which is not part of the data being transmitted,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not sent nor are they
included in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Receive block.

Enable transmit FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action.

References For detailed information on the SCI module, see TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C281x SCI Receive, C281x Hardware Interrupt

7-212

C281x Software Interrupt Trigger

Purpose Generate software triggered nonmaskable interrupt

Library “C281x (c281xlib)” on page 6-8

Description
When you add this block to a model, the block polls the input port for
the input value. When the input value is greater than the value in
Trigger software interrupt when input value is greater than, the
block posts the interrupt to a Hardware Interrupt block in the model.

To use this block, add a Hardware Interrupt block to your model
to process the software triggered interrupt from this block into an
interrupt service routine on the processor. Set the interrupt number
in the Hardware Interrupt block to the value you set here in CPU
interrupt number. The Hardware Interrupt block is located in the
idelinklib_ticcs library (Embedded IDE Link > Supported IDEs > Texas
Instruments Code Composer Studio).

The CPU and PIE interrupt numbers together specify a single interrupt
for a single peripheral or peripheral module. The “C281x Peripheral
Interrupt Vector Values” table maps CPU and PIE interrupt numbers
to these peripheral interrupts.

Note Fixed-point inputs are not supported for this block.

7-213

C281x Software Interrupt Trigger

Dialog
Box

CPU interrupt number
Specify the interrupt the block responds to. Interrupt numbers
are integers ranging from 1 to 12.

PIE interrupt number
Enter an integer value from 1 to 8 to set the Peripheral Interrupt
Expansion (PIE) interrupt number.

Trigger software interrupt when input value is greater than:
Sets the value above which the block posts an interrupt. Enter the
value to set the level that indicates that the interrupt is asserted
by a requesting routine.

References For detailed information about interrupt processing, see TMS320x281x
DSP System Control and Interrupts Reference Guide, SPRU078C,
available at the Texas Instruments Web site.

7-214

C281x Software Interrupt Trigger

See Also C281x Hardware Interrupt

7-215

C281x SPI Receive

Purpose Receive data via serial peripheral interface on target

Library “C281x (c281xlib)” on page 6-8

Description The C281x SPI Receive supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode.

In master mode, the SPISIMO pin transmits data and the SPISOMI pin
receives data. When master mode is selected, the SPI initiates the data
transfer by sending a serial clock signal (SPICLK), which is used for the
entire serial communications link. Data transfers are synchronized to
this SPICLK, which enables both master and slave to send and receive
data simultaneously. The maximum for the clock is one quarter of the
DSP controller’s clock frequency.

For any given model, you can have only one C281x SPI Receive block
per module. There are two modules, A and B, which can be configured
through the F2812 eZdsp Target Preferences block.

Note Many SPI-specific settings are in the DSPBoard section of the
F2812 eZdsp Target Preferences block. You should verify that these
settings are correct for your application.

7-216

C281x SPI Receive

Dialog
Box

Data length
Specify how many uint16s are expected to be received. Select
1 through 16.

Enable blocking mode
If this option is selected, system waits until data is received before
continuing processing.

Output receive error status
When this field is checked, the C281x SPI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

7-217

C281x SPI Receive

• 0: No errors

• 1: Data loss occurred (Overrun: when FIFO disabled, Overflow:
when FIFO enabled)

• 2: Data not ready, a time-out occurred while the block was
waiting to receive data

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data is received.

Sample time
Sample time, Ts, for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, check the
Post interrupt when message is received box, and refer to
“Asynchronous Interrupt Processing” on page 1-11 for a discussion
of block placement and other necessary settings.

See Also C281x SPI Transmit, C281x Hardware Interrupt

7-218

C281x SPI Transmit

Purpose Transmit data via serial peripheral interface (SPI) to host

Library “C281x (c281xlib)” on page 6-8

Description The C281x SPI Transmit supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOMI pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate is inherited from the input port. The supported data
type is uint16.

Note For any given model, you can have only one C281x SPI Transmit
block per module. There are two modules, A and B, which can be
configured through theF2812 eZdsp Target Preferences block.

Many SPI-specific settings are in the DSPBoard section of the F2812
eZdsp Target Preferences block. You should verify that these settings
are correct for your application.

7-219

C281x SPI Transmit

Dialog
Box

Output transmit error status
When this field is checked, the C281x SPI Transmit block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was transmitting data

• 2: There is an error in the transmitted data (for example,
header or terminator don’t match, length of data expected is too
big or too small)

Enable blocking mode
If this option is selected, system waits until data is sent before
continuing processing.

7-220

C281x SPI Transmit

Post interrupt when data is transmitted
Select this check box to post an asynchronous interrupt when
data is transmitted.

See Also C281x SPI Receive

7-221

C281x Timer

Purpose Configure general-purpose timer in Event Manager module

Library “C281x (c281xlib)” on page 6-8

Description The C281x contains two event-manager (EV) modules. Each module
contains two general-purpose (GP) timers. You can use these timers as
independent time bases for various applications.

Use the C281x Timer block to set the periodicity of one GP timer and
the conditions under which it posts interrupts. Each model can contain
up to four C281x Timer blocks.

The C281x Timer module configures GP Timers that other C281 blocks
share. For more information and guidance on sharing timers, see
“Sharing General Purpose Timers between C281x Peripherals” on page
1-16.

7-222

C281x Timer

Dialog
Box

Module
Timer no

Select which of four possible timers to configure. SettingModule
to A lets you select Timer 1 or Timer 2 in Timer no. Setting
Module to B lets you select Timer 3 or Timer 4 in Timer no.

Clock source
When Timer no has a value of Timer 2 or Timer 4, use this
parameter to select the clock source for the event timer. You

7-223

C281x Timer

can choose either Internal or QEP circuit. When you select
Internal, you can configure other options such as Timer period
source, Counting mode, and Timer prescaler.

Timer period source
Select the source of the event timer period. Use Specify via
dialog to set the period using Timer period. Select Input port
to create an input, T, that accepts the value of the timer period
in clock cycles, from 0 to 65535. Timer period source becomes
unavailable when Clock source is set to QEP circuit.

Timer period
Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The value defaults to 10000.

If you know the length of a clock cycle, you can easily calculate
how many clock cycles to set for the timer period. The following
calculation determines the length of one clock cycle:

Sysclk MHz HISPCLK InputClock escaler() (/) Pr (/)150 1 2 1 128→ →

In this calculation, you divide the System clock frequency of 150
MHz by the high-speed clock prescaler of 2. Then, you divide the
resulting value by the timer control input clock prescaler, 128.
The resulting frequency is 0.586 MHz. Thus, one clock cycle is
1/.586MHz, which is 1.706 µs.

Compare value source
Select the source of the compare value. Use Specify via dialog
to set the period using the Compare value parameter. Select
Input port to create a block input, W, that accepts the value of
the compare value, from 0 to 65535.

Compare value
Enter a constant value for comparison to the running timer value
for generating interrupts. Enter a value from 0 to 65535. The
value defaults to 5000. The timer only generates interrupts if you
enable Post interrupt on compare match.

7-224

C281x Timer

Counting mode
Select Up to generate an asymmetrical waveform output, or
Up-down to generate a symmetrical waveform output, as shown in
the following illustration.

When you specify the Counting mode as Up (asymmetric) the
waveform:

• Starts low

• Goes high when the rising period counter value matches the
Compare value

• Goes low at the end of the period

7-225

C281x Timer

When you specify the Counting mode as Up-down (symmetric)
the waveform:

• Starts low

• Goes high when the increasing period counter value matches
the Compare value

• Goes low when the decreasing period counter value matches
the Compare value

Counting mode becomes unavailable when Clock source is
set to QEP circuit.

Timer prescaler
Divide the clock input to produce the desired timer counting rate.

Timer prescaler becomes unavailable when Clock source is
set to QEP circuit.

Post interrupt on period match
Generate an interrupt when the value of the timer reaches its
maximum value as specified in Timer period.

Post interrupt on underflow
Generate an interrupt when the value of the timer cycles back to 0.

Post interrupt on overflow
Generate an interrupt when the value of the timer reaches its
maximum, 65535. Also set Timer period to 65535 for this
parameter to work.

Post interrupt on compare match
Generate an interrupt when the value of the timer equals
Compare value.

References TMS320x281x DSP Event Manager (EV) Reference Guide, Literature
Number: SPRU065, available from the Texas Instruments Web site.

See Also C281x Hardware Interrupt, Idle Task

7-226

C28x Watchdog

Purpose Configure counter reset source of DSP Watchdog module

Library “C280x (c280xlib)” on page 6-2, “C2802x (c2802xlib)” on page 6-4,
“C2803x (c2803xlib)” on page 6-6, “C281x (c281xlib)” on page 6-8,
“C28x3x (c2833xlib)” on page 6-10

Description This block configures the counter reset source of the Watchdog module
on the DSP.

Dialog
Box

Watchdog counter reset source

• Input— Create a input port on the watchdog block. The input
signal resets the counter.

• Specify via dialog — Use the value of Sample time to
reset the watchdog timer.

Sample time
The interval at which the DSP resets the watchdog timer. When
you set this value to -1, the model inherits the sample time value
of the model. To execute this block asynchronously, set Sample

7-227

C28x Watchdog

Time to -1, and refer to “Asynchronous Interrupt Processing” on
page 1-11 for a discussion of block placement and other necessary
settings.

7-228

Clarke Transformation

Purpose Convert balanced three-phase quantities to balanced two-phase
quadrature quantities

Library “C28x DMC (c28xdmclib)” on page 6-12

Description This block converts balanced three-phase quantities into balanced
two-phase quadrature quantities. The transformation implements
these equations

Id Ia

Iq Ib Ia

=

= +() /2 3

and is illustrated in the following figure.

The inputs to this block are the phase a (As) and phase b (Bs)
components of the balanced three-phase quantities and the outputs
are the direct axis (Alpha) component and the quadrature axis (Beta)
of the transformed signal.

The instantaneous outputs are defined by the following equations and
are shown in the following figure:

7-229

Clarke Transformation

ia I t
ib I t
ic I t
id I t

=
= +
= −
=

* sin()
* sin(/)
* sin(/)
* sin()

ω
ω π
ω π
ω

2 3
2 3

iiq I t= +* sin(/)ω π 2

The variables used in the preceding equations and figures correspond to
the variables on the block as shown in the following table:

Equation Variables Block Variables

Inputs ia As

ib Bs

Outputs id Alpha

iq Beta

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

7-230

Clarke Transformation

Dialog
Box

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Inverse Park Transformation, Park Transformation, PID Controller,
Space Vector Generator, Speed Measurement

7-231

Division IQN

Purpose Divide IQ numbers

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block divides two numbers that use the same Q format, using the
Newton-Raphson technique. The resulting quotient uses the same Q
format at the inputs.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x
int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x
IQN2, Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-232

Float to IQN

Purpose Convert floating-point number to IQ number

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block converts a floating-point number to an IQ number. The Q
value of the output is specified in the dialog.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

7-233

Float to IQN

See Also Absolute IQN, Arctangent IQN, Division IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x
int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x
IQN2, Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-234

Fractional part IQN

Purpose Fractional part of IQ number

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block returns the fractional portion of an IQ number. The returned
value is an IQ number in the same IQ format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to
Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude
IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-235

Fractional part IQN x int32

Purpose Fractional part of result of multiplying IQ number and long integer

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block multiplies an IQ input and a long integer input and returns
the fractional portion of the resulting IQ number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

7-236

From Memory

Purpose Retrieve data from target memory

Library “C280x (c280xlib)” on page 6-2, “C281x (c281xlib)” on page 6-8, and
“C28x3x (c2833xlib)” on page 6-10in Target Support Package software

Description This block retrieves data of the specified data type from a particular
memory address on the target.

Dialog
Box

Memory address
Address of the target memory location, in hexadecimal, from
which to read data.

7-237

From Memory

Note To ensure the correct operation of this block, you must
specify exactly the desired memory location. Refer to your Linker
CMD file for available memory locations.

Data type
Data type of the data to obtain from the above memory address.
The data is read as 16-bit data and then cast to the selected data
type. Valid data types are double, single, int8, uint8, int16,
uint16, int32, and uint32.

Sample time
Time interval, in seconds, between consecutive reads from the
specified memory location.

Samples per frame
Number of elements of the specified data type to be read from the
memory region starting at the given address.

See Also To Memory

7-238

From RTDX

Purpose Add RTDX communication channel for target to receive data from host

Library “RTDX Instrumentation (rtdxBlocks)” on page 6-15

Description
Note This block will be removed from the Target Support Package
product in an upcoming release. Consider using TCP/IP or UDP blocks
instead.

When you generate code from Simulink in Real-Time Workshop
software with a From RTDX block in your model, code generation
inserts the C commands to create an RTDX input channel on the target.
Input channels transfer data from the host to the target.

The generated code contains this command:

RTDX_enableInput(&channelname)

where channelname is the name you enter in Channel name.

Note From RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
any operations, except generating an output matching your specified
initial conditions.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

7-239

From RTDX

4 Use the readmsg and writemsg functions on the MATLAB command
line to send and retrieve data from the target over RTDX.

To see more details about using RTDX in your model, refer to the
Embedded IDE Link User’s Guide and the following demos:

• Real-Time Data Exchange (RTDX™) Tutorial

• Comparing Simulation and Target Implementation with RTDX

• Real-Time Data Exchange via RTDX

• DC Motor Speed Control via RTDX™

Dialog
Box

7-240

From RTDX

Channel name
Name of the input channel to be created by the generated code.
The channel name must meet C syntax requirements for length
and character content.

Enable blocking mode
Blocking mode instructs the target processor to pause processing
until new data is available from the From RTDX block. If you
enable blocking and new data is not available when the processor
needs it, your process stops. In nonblocking mode, the processor
uses old data from the block when new data is not available.
Nonblocking operation is the default and is recommended for
most operations.

Initial conditions
Data the processor reads from RTDX for the first read. If blocking
mode is not enabled, you must have an entry for this option.
Leaving the option blank causes an error in Real-Time Workshop
software. Valid values are 0, null ([]), or a scalar. The default
value is 0.

0 or null ([]) outputs a zero to the processor. A scalar generates
one output sample with the value of the scalar. If Output
dimensions specifies an array, every element in the array has
the same scalar or zero value. A null array ([]) outputs a zero
for every sample.

Sample time
Time between samples of the signal. The value defaults to 1
second. This produces a sample rate of one sample per second
(1/Sample time).

Output dimensions
Dimensions of a matrix for the output signal from the block. The
first value is the number of rows and the second is the number
of columns. For example, the default setting [1 64] represents
a 1-by-64 matrix of output values. Enter a 1-by-2 vector for the
dimensions.

7-241

From RTDX

Frame-based
Sets a flag at the block output that directs downstream blocks
to use frame-based processing on the data from this block. In
frame-based processing, the samples in a frame are processed
simultaneously. In sample-based processing, samples are
processed one at a time. Frame-based processing can increase the
speed of your application running on your target. Throughput
remains the same in samples per second processed. Frame-based
operation is the default.

Data type
Type of data coming from the block. Select one of the following
types:

• Double — Double-precision floating-point values. This is the
default. Values range from -1 to 1.

• Single— Single-precision floating-point values ranging from
-1 to 1.

• Uint8— 8-bit unsigned integers. Output values range from 0
to 255.

• Int16— 16-bit signed integers. With the sign, the values range
from -32768 to 32767.

• Int32 — 32-bit signed integers. Values range from -231 to
(231-1).

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function in the Embedded IDE Link software to prepare your
RTDX channels. This option applies only to the channel you
specify in Channel name. You do have to open the channel.

See Also ticcs, readmsg, To RTDX, writemsg.

References RTDX 2.0 User’s Guide, Literature Number: SPRUFC7, available from
the Texas Instruments Web site.

7-242

From RTDX

How to Write an RTDX Host Application Using MATLAB, Literature
Number: SPRA386, available from the Texas Instruments Web site.

7-243

Integer part IQN

Purpose Integer part of IQ number

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block returns the integer portion of an IQ number. The returned
value is a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-244

Integer part IQN x int32

Purpose Integer part of result of multiplying IQ number and long integer

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block multiplies an IQ input and a long integer input and returns
the integer portion of the resulting IQ number as a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

7-245

Inverse Park Transformation

Purpose Convert rotating reference frame vectors to two-phase stationary
reference frame

Library “C28x DMC (c28xdmclib)” on page 6-12

Description This block converts vectors in an orthogonal rotating reference frame to
a two-phase orthogonal stationary reference frame. The transformation
implements these equations:

Id ID IQ
Iq ID IQ

= −
= +

* cos * sin
* sin * cos

θ θ
θ θ

and is illustrated in the following figure.

The inputs to this block are the direct axis (Ds) and quadrature axis (Qs)
components of the transformed signal in the rotating frame and the
phase angle (Angle) between the stationary and rotating frames.

The outputs are the direct axis (Alpha) and the quadrature axis (Beta)
components of the transformed signal.

The variables used in the preceding figure and equations correspond to
the block variables as shown in the following table:

7-246

Inverse Park Transformation

Equation Variables Block Variables

Inputs ID Ds

IQ Qs

θ Angle

Outputs id Alpha

iq Beta

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Park Transformation, PID Controller, Space
Vector Generator, Speed Measurement

7-247

IQN to Float

Purpose Convert IQ number to floating-point number

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block converts an IQ input to an equivalent floating-point number.
The output is a single floating-point number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-248

IQN x int32

Purpose Multiply IQ number with long integer

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block multiplies an IQ input and a long integer input and produces
an IQ output of the same Q value as the IQ input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-249

IQN x IQN

Purpose Multiply IQ numbers with same Q format

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block multiplies two IQ numbers. Optionally, it can also round and
saturate the result.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

Multiply option
Type of multiplication to perform:

• Multiply — Multiply the numbers.

• Multiply with Rounding— Multiply the numbers and round
the result.

• Multiply with Rounding and Saturation — Multiply the
numbers and round and saturate the result to the maximum
value.

7-250

IQN x IQN

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-251

IQN1 to IQN2

Purpose Convert IQ number to different Q format

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block converts an IQ number in a particular Q format to a different
Q format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

7-252

IQN1 to IQN2

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-253

IQN1 x IQN2

Purpose Multiply IQ numbers with different Q formats

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block multiples two IQ numbers when the numbers are represented
in different Q formats. The format of the result is specified in the dialog
box.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

7-254

IQN1 x IQN2

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-255

Magnitude IQN

Purpose Magnitude of two orthogonal IQ numbers

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block calculates the magnitude of two IQ numbers using

a b2 2+

The output is an IQ number in the same Q format as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-256

Park Transformation

Purpose Convert two-phase stationary system vectors to rotating system vectors

Library “C28x DMC (c28xdmclib)” on page 6-12

Description This block converts vectors in balanced two-phase orthogonal
stationary systems into an orthogonal rotating reference frame. The
transformation implements these equations

ID Id Iq
IQ Id Iq

= +
= − +

* cos * sin
* sin * cos

θ θ
θ θ

and is illustrated in the following figure.

The variables used in the preceding figure and equations correspond to
the block variables as shown in the following table:

Equation Variables Block Variables

Inputs id Alpha

iq Beta

θ Angle

Outputs ID Ds

IQ Qs

7-257

Park Transformation

The inputs to this block are the direct axis (Alpha) and the quadrature
axis (Beta) components of the transformed signal and the phase angle
(Angle) between the stationary and rotating frames.

The outputs are the direct axis (Ds) and quadrature axis (Qs)
components of the transformed signal in the rotating frame.

The instantaneous inputs are defined by the following equations:

id I t
iq I t

=
= +

* sin()
* sin(/)

ω
ω π 2

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, PID Controller,
Space Vector Generator, Speed Measurement

7-258

PID Controller

Purpose Digital PID controller

Library “C28x DMC (c28xdmclib)” on page 6-12

Description This block implements a 32-bit digital PID controller with antiwindup
correction. The inputs are a reference input (ref) and a feedback input
(fdb) and the output (out) is the saturated PID output. The following
diagram shows a PID controller with antiwindup.

The differential equation describing the PID controller before saturation
that is implemented in this block is

“upresat(t) = up(t) + ui(t) + ud(t)”

where upresat is the PID output before saturation, up is the proportional
term, ui is the integral term with saturation correction, and ud is the
derivative term.

7-259

PID Controller

The proportional term is

“up(t) = Kpe(t)”

where Kp is the proportional gain of the PID controller and e(t) is the
error between the reference and feedback inputs.

The integral term with saturation correction is

u t
K

T
e K u u di

p

i
c presat

t

() () () ()= + −()⎧
⎨
⎩

⎫
⎬
⎭

∫
0

where Kc is the integral correction gain of the PID controller.

The derivative term is

u t K T
de t
dtd p d()
()=

where Td is the derivative time of the PID controller. In discrete terms,
the derivative gain is defined as Kd = Td/T, and the integral gain is
defined as Ki = T/Ti, where T is the sampling period and Ti is the
integral time of the PID controller.

Using backward approximation, the preceding differential equations
can be transformed into the following discrete equations.

u n K e n

u n u n K K e n K u n u n

p p

i i i p c presat

[] []

[] [] [] [] []

=

= − + + − − −()1 1 1

uu n K K e n e n

u n u n u n u n

u n S

d d p

presat p i d

[] [] []

[] [] [] []

[]

= − −()
= + +

=

1

AAT u npresat[]()

7-260

PID Controller

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

Proportional gain
Amount of proportional gain (Kp) to apply to the PID

Integral gain
Amount of gain (Ki) to apply to the integration equation

7-261

PID Controller

Integral correction gain
Amount of correction gain (Kc) to apply to the integration equation

Derivative gain
Amount of gain (Kd) to apply to the derivative equation.

Minimum output
Minimum allowable value of the PID output

Maximum output
Maximum allowable value of the PID output

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, Space Vector Generator, Speed Measurement

7-262

Ramp Control

Purpose Create ramp-up and ramp-down function

Library “C28x DMC (c28xdmclib)” on page 6-12

Description This block implements a ramp-up and ramp-down function. The input
is a target value and the outputs are the set point value (setpt) and
a flag. The flag output is set to 7FFFFFFFh when the output setpt
value reaches the input target value. The target and setpt values
are signed 32-bit fixed-point numbers with Q values between 16 and 29.
The flag is a long number.

The target value is compared with the setpt value. If they are not
equal, the output setpt is adjusted up or down by a fixed step size
(0.0000305).

If the fixed step size is relatively large compared to the target value,
the output may oscillate around the target value.

Dialog
Box

7-263

Ramp Control

Maximum delay rate
Value that is multiplied by the sampling loop time period to
determine the time delay for each ramp step. Valid values are
integers greater than 0.

Minimum limit
Minimum allowable ramp value. If the input falls below this
value, it will be saturated to this minimum. The smallest value
you can enter is the minimum value that can be represented in
fixed-point data format by the input and output blocks to which
this Ramp Control block is connected in your model. If you enter
a value below this minimum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its minimum value is -4.

Maximum limit
Maximum allowable ramp value. If the input goes above this
value, it will be reduced to this maximum. The largest value
you can enter is the maximum value that can be represented in
fixed-point data format by the input and output blocks to which
this Ramp Control block is connected in your model. If you enter
a value above this maximum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its maximum value is 3.9999....

See Also Ramp Generator

7-264

Ramp Generator

Purpose Generate ramp output

Library “C28x DMC (c28xdmclib)” on page 6-12

Description This block generates ramp output (out) from the slope of the ramp
signal (gain), DC offset in the ramp signal (offset), and frequency of
the ramp signal (freq) inputs. All of the inputs and output are 32-bit
fixed-point numbers with Q values between 1 and 29.

Algorithm The block’s output (out) at the sampling instant k is governed by the
following algorithm:

“out(k) = angle(k) * gain(k) + offset(k) ”

For out(k) > 1, out(k) = out(k) - 1. For out(k) < -1, out(k) = out(k) + 1.

Angle(k) is defined as follows:

“angle(k) = angle(k-1) + freq(k) * Maximum step angle

for angle(k) > 1, angle(k) = angle(k) - 1

for angle(k) < -1, angle(k) = angle(k) + 1”

The frequency of the ramp output is controlled by a precision frequency
generation algorithm that relies on the modulo nature of the finite
length variables. The frequency of the output ramp signal is equal to

“f = (Maximum step angle * sampling rate) / 2m ”

where m represents the fractional length of the data type of the inputs.

All math operations are carried out in fixed-point arithmetic, where the
fixed-point fractional length is determined by the block’s inputs.

7-265

Ramp Generator

Dialog
Box

Maximum step angle
The maximum step size, which determines the rate of change of
the output (i.e., the minimum period of the ramp signal).

When you enter double-precision floating-point values for
parameters in the IQ Math blocks, the software converts them
to single-precision values that are compatible with the behavior
on c28x processor.

Examples The following model demonstrates the Ramp Generator block. The
Constant and Scope blocks are available in Simulink Commonly Used
Blocks.

7-266

Ramp Generator

In your model, select Simulation > Configuration Parameters. On
the Solver pane, set Type to Fixed-step and Solver to Discrete
(no continuous states). Set the parameter values for the blocks
as shown in the following table.

Block Connects to Parameter Value

Constant Ramp Generator - gain Constant value

Sample time

Output data type

Output scalig value

1

0.001

sfix(32)

2^-9

Constant Ramp Generator -
offset

Constant value

Sample time

Output data type

Output scalig value

0

inf

sfix(32)

2^-9

Constant Ramp Generator - freq Constant value

Sample time

Output data type

Output scalig value

0.001

inf

sfix(32)

2^-9

Ramp
Generator

Scope and Floating
Scope (Simulink block)

Maximum step angle 1

When you run the model, the Scope block generates the following output
(drag a zoom box around a portion of the output to change the display).

7-267

Ramp Generator

The expected frequency of the output is

“f = (maximum step angle * sampling rate) / 2m

f = (1 * 1000) / 2^9 = 1.9531 Hz ”

The expected period is then

“T = 1/f = 0.5120 s ”

which is what the above Scope output shows.

See Also Ramp Control

7-268

Saturate IQN

Purpose Saturate IQ number

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block saturates an input IQ number to the specified upper and
lower limits. The returned value is an IQ number of the same Q value
as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

Upper Limit
Maximum real-world value to which to saturate

Lower Limit
Minimum real-world value to which to saturate

7-269

Saturate IQN

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Magnitude IQN, Square Root IQN, Trig Fcn IQN

7-270

SCI Receive

Purpose Configure host-side serial communications interface to receive data
from serial port

Library “Host SCI Blocks (c2000scilib)” on page 6-14

Description
Specify the configuration of data being received from the target by
this block.

The data package being received is limited to 16 bytes of ASCII
characters, including package headers and terminators. Calculate
the size of a package by including the package header, or terminator,
or both, and the data size.

Acceptable data types are single, int8, uint8, int16, uint16, int32,
or uint32. The number of bytes in each data type is listed in the
following table:

Data Type Byte Count

single 4 bytes

int8 and uint8 1 byte

int16 and uint16 2 bytes

int32 anduint32 4 bytes

For example, if your data package has package header ’S’ (1 byte) and
package terminator ’E’ (1 byte), that leaves 14 bytes for the actual data.
If your data is of type int8, there is room in the data package for 14
int8s. If your data is of type uint16, there is room in the data package
for 7 uint16s. If your data is of type int32, there is room in the data
package for only 3 int32s, with 2 bytes left over. Even though you
could fit two int8s or one uint16 in the remaining space, you may not,
because you cannot mix data types in the same package.

7-271

SCI Receive

The number of data types that can fit into a data package determine
the data length (see Data length in the Dialog Box description). In the
example just given, the 14 for data type int8 and the 7 for data type
uint16 are the data lengths for each data package, respectively. When
the data length exceeds 16 bytes, unexpected behavior, including run
time errors, may result.

Dialog
Box

Port name
You may configure up to four COM ports (COM1 through COM4)
for up to four host-side SCI Receive blocks.

7-272

SCI Receive

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the
target SCI transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are they
included in the total byte count.

Data type
Choice of single, int8, uint8, int16, uint16, int32, or uint32.

The input port of the SCI Transmit block accepts only one of these
values. Which value it accepts is inherited from the data type
from the input (the data length is also inherited from the input).
Data must consist of only one data type; you cannot mix types.

Data length
How many of Data type the block receives (not bytes). Anything
more than 1 is a vector. The data length is inherited from the
input (the data length input to the SCI Transmit block).

7-273

SCI Receive

Initial output
Default value from the Receive block. This value is used, for
example, if a connection time-out occurs and the Action taken
when connection timeout field is set to “Output the last
received value”, but nothing yet has been received.

Action Taken when connection times out
Specify what to output if a connection time-out occurs. If “Output
the last received value” is selected, the last received value is what
is output, unless none has yet been received , in which case the
Initial output is considered the last received value.

If you select "Output custom value", use the "Output value when
connection times out" field to set the custom value.

Sample time
Determines how often the SCI Receive block is called (in seconds).
When you set this value to -1, the model inherits the sample
time value of the model. To execute this block asynchronously,
set Sample Time to -1, and refer to “Asynchronous Interrupt
Processing” on page 1-11 for a discussion of block placement and
other necessary settings.

Output receiving status
When this field is checked, the SCI Receive block adds another
output port for the transaction status, and appears as shown in
the following figure.

The error status may be one of the following values:

7-274

SCI Receive

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an error in the received data (checksum error)

• 3: SCI parity error flag — Occurs when a character is received
with a mismatch

• 4: SCI framing error flag — Occurs when an expected stop bit
is not found

7-275

SCI Setup

Purpose Configure COM ports for host-side SCI Transmit and Receive blocks

Library “Host SCI Blocks (c2000scilib)” on page 6-14

Description
Standardize COM port settings for use by the host-side SCI Transmit
and Receive blocks. Setting COM port configurations globally with
the SCI Setup block avoids conflicts (e.g., the host-side SCI Transmit
block cannot use COM1 with settings different than those the COM1
used by the host-side SCI Receive block) and requires that you set
configurations only once for each COM port. The SCI Setup block is
a stand alone block.

Dialog
Box

7-276

SCI Setup

Communication Mode
Raw data or protocol. Raw data is unformatted and sent whenever
the transmitting side is ready to send, whether the receiving side
is ready or not. No deadlock condition can occur because there
is no wait state. Data transmission is asynchronous. With this
mode, it is possible the receiving side could miss data, but if the
data is noncritical, using raw data mode can avoid blocking any
processes.

If you specify protocol mode, some handshaking between host
and target occurs. The transmitting side sends $SND indicating
that it is ready to transmit. The receiving side sends back $RDY
indicating that it is ready to receive. The transmitting side then
sends data and, when the transmission is completed, it sends a
checksum.

Advantages to using protocol mode include

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by target

• Ensures time consistency; each side waits for its turn to send
or receive

Note Deadlocks can occur if one SCI Transmit block is trying to
communicate with more than one SCI Receive block on different
COM ports when both are blocking (using protocol mode).
Deadlocks cannot occur on the same COM port.

Baud rate
Choose from 110, 300, 1200, 2400, 4800, 9600, 19200, 38400,
57600, or 115200.

Number of stop bits
Select 1 or 2.

7-277

SCI Setup

Parity mode
Select none, odd, or even.

Timeout
Enter any value greater than or equal to 0, in seconds. When the
COM port involved is using protocol mode, this value indicates
how long the transmitting side waits for an acknowledgement
from the receiving side or how long the receiving side waits for
data. The system displays a warning message if the time-out
is exceeded, every n number of seconds, n being the value in
Timeout.

Note Simulink actually suspends processing for the length of the
time-out, and you will not be able to perform any Simulink action.
If the time-out is set for a long period of time, it may appear that
Simulink has frozen.

7-278

SCI Transmit

Purpose Configure host-side serial communications interface to transmit data to
serial port

Library “Host SCI Blocks (c2000scilib)” on page 6-14

Description
Specify the configuration of data being transmitted to the target from
this block.

The data package being sent is limited to 16 bytes of ASCII characters,
including package headers and terminators. Calculate the size of a
package by figuring in package header, or terminator, or both, and
the data size.

Acceptable data types are single, int8, uint8, int16, uint16, int32,
or uint32. The byte size of each data type is as follows:

Data Type Byte Count

single 4 bytes

int8 & uint8 1 byte

int16 & uint16 2 bytes

int32 & uint32 4 bytes

For example, if your data package has package header “S” (1 byte) and
package terminator “E” (1 byte), that leaves 14 bytes for the actual data.
If your data is of type int8, there is room in the data package for 14
int8s. If your data is of type uint16, there is room in the data package
for only 7 uint16s. If your data is of type int32, there is room in the
data package for only 3 int32s, with 2 bytes left over. Even though you
could fit two int8s or one uint16 in the remaining space, you may not,
because you cannot mix data types in the same package.

7-279

SCI Transmit

The number of data types that can fit into a data package determine
the data length (see Data length in the Dialog Box description). In
the example just given, the 14 for data type int8 and the 7 for data
type uint16 are the data lengths for each data package, respectively.
When the data length exceeds 16 bytes, unexpected behavior, including
run time errors, may result.

Dialog
Box

Port name
You may configure up to four COM ports (COM1 through COM4)
for up to four host-side SCI Transmit blocks.

Additional package header
This field specifies the data located at the front of the transmitted
data package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not sent nor are they included in
the total byte count.

7-280

SCI Transmit

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the
target SCI receive block.

Additional package terminator
This field specifies the data located at the end of the transmitted
data package, which is not part of the data being sent, and
generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not transmitted nor are
they included in the total byte count.

7-281

Space Vector Generator

Purpose Duty ratios for stator reference voltage

Library “C28x DMC (c28xdmclib)” on page 6-12

Description This block calculates appropriate duty ratios needed to generate a
given stator reference voltage using space vector PWM technique.
Space vector pulse width modulation is a switching sequence of the
upper three power devices of a three-phase voltage source inverter
and is used in applications such as AC induction and permanent
magnet synchronous motor drives. The switching scheme results in
three pseudosinusoidal currents in the stator phases. This technique
approximates a given stator reference voltage vector by combining the
switching pattern corresponding to the basic space vectors.

The inputs to this block are

• Alpha component — the reference stator voltage vector on the direct
axis stationary reference frame (Ua)

• Beta component — the reference stator voltage vector on the direct
axis quadrature reference frame (Ub)

The alpha and beta components are transformed via the inverse Clarke
equation and projected into reference phase voltages. These voltages
are represented in the outputs as the duty ratios of the PWM1 (Ta),
PWM3 (Tb), and PWM5 (Tc).

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

7-282

Space Vector Generator

Dialog
Box

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, PID Controller, Speed Measurement

7-283

Speed Measurement

Purpose Calculate motor speed

Library “C28x DMC (c28xdmclib)” on page 6-12

Description This block calculates the motor speed based on the rotor position when
the direction information is available. The inputs are the electrical
angle (theta) and the direction of rotation (dir) from the encoder. The
outputs are the speed normalized from 0 to 1 in the Q format (freq) and
the speed in revolutions per minute (rpm).

Note This block does not call the corresponding Texas Instruments
library function during code generation. Instead, the MathWorks code
uses the TI functions global Q setting to adjust dynamically the Q
format based on the block input. See Chapter 4, “Using the IQmath
Library” for more information.

Understanding the Theta Input to the Block

To indicate the rotational position of your motor, the block expects a
32-bit, fixed-point value that varies from 0 to 1.

Block input theta is defined by the following relations:

• A theta input signal equal to 0 indicates 0 degrees of rotation.

• A theta input signal equal to 1 indicates 360 degrees of rotation
(one full rotation).

When the motor spins at a constant speed, theta (in counts) from your
position sensor (encoder) should increase linearly from 0 to 1 and then
abruptly return to 0, like a saw-shaped signal. Adjust the theta signal
output from your encoder to get the correct input signal range for the
Speed Measurement block. Then, convert your encoder signal to 32-bit
fixed-point Q format that meets your resolution needs.

For example, if you are using a position sensor that generates 8000
counts for one full revolution of the motor, (0.0450 degrees per count),

7-284

Speed Measurement

you need to reset your counter to 0 after your counter reaches 8000.
Each time you read your encoder position, you need to convert the
position to a 32-bit, fixed-point Q format value knowing that 8000 is
represented as a 1.0. In this example your format could be Q31.

The Base Speed Parameter

Base speed is the maximum motor rotation rate to measure. This value
is probably not the maximum speed the motor can achieve.

The Speed Measurement block calculates motor speed from two
successive theta readings of the motor position, thetanew and thetaold
(the base speed of the motor; and the time between readings). The
maximum speed the block can calculate occurs when the difference
between two successive samples [abs(thetanew-thetaold)] is 1.0—one full
motor revolution occurs between theta samples.

Therefore, the value you provide for the Base speed (in revolutions per
minute) parameter is the speed, in revolutions per minute, at which
your motor position signal reports one full revolution during one sample
time. While the motor may spin faster than the base speed, the block
cannot calculate the rotation rate correctly in that case. If the motor
completes more than one revolution in one sample time, the calculated
speed may be wrong. The block does not know that between samples
thetanew and thetaold, theta wrapped from 1 back to 0 and started
counting up again.

The time difference between the two theta readings is the sample time.
The Speed Measurement block inherits the sample time from the
upstream block in your model. You set the sample time in the upstream
block and then the Speed Measurement block uses that sample time to
calculate the rotation rate of the motor.

The Sample Time Calculation

Motor speed measurements depend on the sample time you set in the
model. Your sample time must be short enough to measure the full
speed of the motor.

Two parameters drive your sample time—motor base speed and encoder
counts per revolution. To be able to measure the maximum rotation

7-285

Speed Measurement

rate, you must take at least one sample for each revolution. For a motor
with base speed equal to 1000 rpm, which is 16.67 rps, you need to
sample at 1/16.67 s, which is 0.06 s/sample. This sample rate of 16.67
samples per second is the maximum sample time (lowest sample rate)
that assures you can measure the full speed of the motor.

Using the same sample rate assumption, the minimum speed the block
can measure depends on the encoder counts per revolution. At the
minimum measurable motor speed, the encoder generates one count per
sample period—16.67 counts per second. For an encoder that generates
8000 counts per revolution, this results in being able to measure a speed
of [(16.67 counts/s) * (0.045 degrees/count)] = 0.752 degrees per second,
or about 45 degrees per minute—one-eighth RPM.

The Differentiator Constant

The differentiator constant is a scalar value applied to the block output.
For example, setting it to 1 produces no effect on the output. Setting
the constant to 1/4 multiplies the frequency and revolutions per minute
outputs by 0.25. This setting can be useful when your motor has
multiple pole pairs, and one electrical revolution is not equal to one
mechanical revolution. The constant lets you account for the difference
between electrical and mechanical rotation rates.

The Low-Pass Filter Constant

This block includes filtering capability if your position signal is noisy.
Setting the filter constant to 0 disables the filter. Setting the filter
constant to 1 filters out the entire signal and results in a block output
equal to 0. Use a simulation to determine the best filter constant for
your system. Your goal is to filter enough to remove the noise on your
signal but not so much that the speed measurements cannot react to
abrupt speed changes.

7-286

Speed Measurement

Dialog
Box

Base speed
Maximum speed of the motor to measure in revolutions per
minute.

Differentiator constant
Constant used in the differentiator equation that describes the
rotor position.

Low-pass filter constant
Constant to apply to the lowpass filter. This constant is
1/(1+T*(2πfc)), where T is the sampling period and fc is the cutoff
frequency. The 1/(2πfc) term is the lowpass filter time constant.
This block uses a lowpass filter to reduce noise generated by the
differentiator.

Example The following example demonstrates how you configure the Speed
Measurement block.

7-287

Speed Measurement

Configuring the Speed Measurement Block to Measure
Motor Speed

Use the following process to set up the Speed Measurement block
parameters.

1 Add the block to your model.

2 Open the block dialog box to view the block parameters.

3 Set the value for Base Speed to the maximum speed to measure, in
revolutions per minute.

4 Enter values for Differentiator and Low-Pass Filter Constant.

5 Click OK to close the dialog box.

Setting the Sample Time to Measure Motor Speed

Use the following process to set the sample time for measuring the
motor speed.

1 Open the block dialog box for the block before the Speed Measurement
block in your model (the upstream or driving block).

2 Set the sample time parameter in the upstream block according to the
sample time guidelines described in The Sample Time Calculation.

3 Click OK to close the dialog box.

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, SPRC080, available at the Texas Instruments
Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, PID Controller, Space Vector Generator

7-288

Square Root IQN

Purpose Square root or inverse square root of IQ number

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block calculates the square root or inverse square root of an IQ
number and returns an IQ number of the same Q format. The block
uses table lookup and a Newton-Raphson approximation.

Negative inputs to this block return a value of zero.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

Function
Whether to calculate the square root or inverse square root

• Square root (_sqrt)— Compute the square root.

• Inverse square root (_isqrt) — Compute the inverse
square root.

7-289

Square Root IQN

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Magnitude IQN, Saturate IQN, Trig Fcn IQN

7-290

Switch External Mode Configuration

Purpose Configure model for external mode or executable building

Library Target Support Package software/ C2000 Driver Library/ Utilities

Description Place the Switch External Mode Configuration block in your model and
double-click it to run a convenience function to configure your model
for building an executable, or executing your model in external mode.
When you double-click the block, a dialog box appears. Choose either
Building an executable or External mode, and click OK.

When you choose building an executable, messages at the command line
inform you the following steps are taken to configure your model:

1 Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). This is required for ASAP2
generation

2 Normal simulation mode is selected (in the Simulation menu, and
drop-down list in the toolbar).

3 ASAP2 is selected as the Interface (under Real-Time Workshop,
Interface, in the Data Exchange pane, in the Configuration
Parameters dialog box).

When you choose external mode, messages at the command line inform
you the following steps are taken to configure your model:

1 Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). This is required for external
mode.

2 External simulation mode is selected (in the Simulation menu, and
drop-down list in the toolbar).

3 External mode is selected as the Interface (under Real-Time
Workshop, Interface, in the Data Exchange pane, in the Configuration
Parameters dialog box).

7-291

To Memory

Purpose Write data to target memory

Library “C280x (c280xlib)” on page 6-2 or “C281x (c281xlib)” on page 6-8

Description This block sends data of the specified data type to a particular memory
address on the target.

Dialog
Box

Parameters Pane

Memory address
Address of the target memory location, in hexadecimal, to which
to write data

Data type
Type of data to be written to the above memory address. Valid
data types are double, single, int8, uint8, int16, uint16,

7-292

To Memory

int32, and uint32. The data is cast from the selected data type
to 16-bit data.

Write at initialization
Whether to write the specified Value at program start

Value
First value of data to be written to memory at program start

Write at termination
Whether to write the specified Value at program end

Value
Last value of data to be written to memory at program termination

Write at every sample time
Whether to write data in real time during program execution

Note If your Write To Memory block is set to write to memory at
every sample time interval (that is, it has an incoming port) and
it receives a vector signal input of N elements, a corresponding
memory region starting with the specified Memory address is
updated at every sample time. If you specify an Initial and/or
Termination value, that value is written to all locations in the
same memory region at initialization and/or termination.

If your Write To Memory block does not write to memory at every
sample time (that is, it does not have an incoming port) and
you specify an Initial and/or Termination value, that value
is written to a single memory location that corresponds to the
specified Memory address.

7-293

To Memory

Custom Code Pane

Insert custom code before memory write
C code to execute before writing to the specified memory address.
An example of code that might be inserted here is

asm (" EALLOW ");

which enables write access to the device emulation registers on
the C2812 DSP.

Insert custom code after memory write
C code to execute after writing to the specified memory address.
An example of code that may be inserted here is

asm (" EDIS ");

which disables write access to the device emulation registers on
the C2812 DSP.

See Also From Memory

7-294

To RTDX

Purpose Add RTDX communication channel to send data from target to host

Library “RTDX Instrumentation (rtdxBlocks)” on page 6-15

Description
Note This block will be removed from the Target Support Package
product in an upcoming release. Consider using TCP/IP or UDP blocks
instead.

When you generate code from Simulink in Real-Time Workshop
software with a To RTDX block in your model, code generation inserts
the C commands to create an RTDX output channel on the target DSP.
The output channels transfer data from the target DSP to the host.

The generated code contains this command:

RTDX_enableOutput(&channelname)

where channelname is the name you enter in the channelName field
in the To RTDX dialog box.

Note To RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
any operations.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

7-295

To RTDX

4 Use the readmsg and writemsg functions on the MATLAB command
line to send and retrieve data from the target over RTDX.

To see more details about using RTDX in your model, refer to the
Embedded IDE Link User’s Guide and the following demos:

• Real-Time Data Exchange (RTDX™) Tutorial

• Comparing Simulation and Target Implementation with RTDX

• Real-Time Data Exchange via RTDX

• DC Motor Speed Control via RTDX™

Dialog
Box

Channel name
Name of the output channel to be created by the generated code.
The channel name must meet C syntax requirements for length
and character content.

Enable blocking mode
Enables blocking mode (selected by default). In blocking mode,
writing a message is suspended while the RTDX channel is busy,
that is, when data is being written in either direction. The code
waits at the RTDX_write call site while the channel is busy. Any
interrupt of the higher priority will temporary divert the program

7-296

To RTDX

execution from this site, but it will eventually come back and wait
until the channel stops writing.

When blocking mode is not enabled (when the check box is
cleared), writing a message is abandoned if the RTDX channel is
busy, and the code proceeds with the current iteration.

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function in Embedded IDE Link software to prepare your RTDX
channels. This option applies only to the channel you specify in
Channel name. You do have to open the channel.

See Also From RTDX

References RTDX 2.0 User’s Guide, Literature Number: SPRUFC7, available from
the Texas Instruments Web site.

How to Write an RTDX Host Application Using MATLAB, Literature
Number: SPRA386, available from the Texas Instruments Web site.

7-297

Trig Fcn IQN

Purpose Sine, cosine, or arc tangent of IQ number

Library “C28x IQmath (tiiqmathlib)” on page 6-13

Description This block calculates basic trigonometric functions and returns the
result as an IQ number. Valid Q values for _IQsinPU and _IQcosPU are
1 to 30. For all others, valid Q values are from 1 to 29.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
Chapter 4, “Using the IQmath Library” for more information.

Dialog
Box

Function
Type of trigonometric function to calculate:

• _IQsin— Compute the sine (sin(A)), where A is in radians.

• _IQsinPU— Compute the sine per unit (sin(2*pi*A)), where
A is in per-unit radians.

• _IQcos— Compute the cosine (cos(A)), where A is in radians.

• _IQcosPU — Compute the cosine per unit (cos(2*pi*A)),
where A is in per-unit radians.

7-298

Trig Fcn IQN

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Magnitude IQN, Saturate IQN, Square Root IQN

7-299

Trig Fcn IQN

7-300

Index

IndexA
Absolute IQN block 7-2
acquisition window

ADC blocks
ACQ_PS 3-2

ADC blocks
C281x 7-157

Arctangent IQN block 7-3
ASAP2 files, generating 2-18
asymmetric vs. symmetric waveforms 7-190
asynchronous interrupt processing 1-11

B
blocks

adding to model 1-35
CAN Calibration Protocol 7-13
recommendations 1-26
Switch External Mode Configuration 7-291

C
C2000 Library

SCI Receive
Host-side 7-271

SCI Setup
Host-side 7-276

SCI Transmit
Host-side 7-279

c2000lib startup 1-31
C2802x ADC 7-118
C2802x COMP 7-116
C2802x/C2803x AnalogIO Input 7-123
C2802x/C2803x AnalogIO Output 7-125
C2802x/C2803x ePWM 7-127
C2803x ADC 7-118
C2803x COMP 7-116
C280x/C2802x/C2803x/C28x3x eCAP block 7-28
C280x/C2802x/C2803x/C28x3x GPIO Digital

Input 7-84

C280x/C2802x/C2803x/C28x3x GPIO Digital
Output 7-87

C280x/C2802x/C2803x/C28x3x I2C Receive
block 7-90

C280x/C2802x/C2803x/C28x3x I2C Transmit
block 7-94

C280x/C2802x/C2803x/C28x3x SCI Receive
block 7-97

C280x/C2802x/C2803x/C28x3x SCI Transmit
block 7-104

C280x/C2802x/C2803x/C28x3x Software
Interrupt Trigger 7-107

C280x/C2802x/C2803x/C28x3x SPI Receive
block 7-110

C280x/C2802x/C2803x/C28x3x SPI Transmit
block 7-113

C280x/C2803x/C28x3x eCAN Receive block 7-19
C280x/C2803x/C28x3x eCAN Transmit

block 7-24
C280x/C2803x/C28x3x ePWM block 7-39
C280x/C2803x/C28x3x eQEP block 7-66
C280x/C28x3x ADC block 7-5
C281x ADC block 7-157
C281x CAP block 7-162
C281x eCAN Receive block 7-171
C281x eCAN Transmit block 7-176
C281x GPIO Digital Input block 7-180
C281x GPIO Digital Output block 7-184
C281x PWM block 7-188
C281x QEP block 7-200
C281x SCI Receive block 7-204
C281x SCI Transmit block 7-210
C281x Software Interrupt Trigger 7-213
C281x SPI Receive block 7-216
C281x SPI Transmit block 7-219
C281x Timer block 7-222
C28x3x GPIO Digital Input 7-84
C28x3x GPIO Digital Output 7-87
CAN Calibration Protocol block 7-13
CAN/eCAN

Index-1

Index

C280x/C2803x/C2833x Receive block 7-19
C280x/C2803x/C28x3x Transmit block 7-24
C281x Transmit block 7-176
C281xReceive block 7-171
timing parameters

bit rate 2-3
capture block

C281x 7-162
CCS 1-7

See also Code Composer Studio™
Clarke Transformation block 7-229
clock speed 1-11
Code Composer Studio™ 1-7
code generation

overview 1-38
code optimization 4-11
configuration default 1-7
configuration parameters

setting 1-28
conversion

float to IQ number 7-233
IQ number to different IQ number 7-252
IQ number to float 7-248

CPU clock speed 1-11

D
data type support 1-9
data types

conversion 4-10
deadband

C281x PWM 7-196
default build configuration 1-7
device driver blocks

CAN Calibration Protocol 7-13
digital motor control. See DMC library
Division IQN block 7-232
DMC library

Clarke Transformation 7-229
Inverse Park Transformation 7-246

Park Transformation 7-257
PID controller 7-259
ramp control 7-263
ramp generator 7-265
Space Vector Generator 7-282
Speed Measurement 7-284

duty ratios 7-282

E
enhanced capture channel 7-28
enhanced quadrature encoder pulse module

C280x/C2803x/C2833x 7-66
ePWM blocks

C280x/C2833x 7-39

F
fixed-point numbers 4-4
Float to IQN block 7-233
floating-point numbers

convert to IQ number 7-233
four-quadrant arctangent 7-3
Fractional part IQN block 7-235
Fractional part IQN x int32 block 7-236
From RTDX block 7-239

G
GPIO Digital Input

C280x 7-84
C28x3x 7-84

GPIO Digital Output
C280x 7-87
C28x3x 7-87

GPIO input
C281x 7-180

GPIO output
C281x 7-184

Index-2

Index

H
hardware 1-3
high-speed peripheral clock 1-11

I
I/O

C281x input 7-180
C281x output 7-184

I2C
C280x/C28x3x Receive 7-90
C280x/C28x3x Transmit 7-94

installing software 1-3
Integer part IQN block 7-244
Integer part IQN x int32 block 7-245
interrupt

software triggered for C280x/C28x3x 7-107
software triggered for C281x 7-213

Inverse Park Transformation block 7-246
IQ Math library 4-2

Absolute IQN block 7-2
Arctangent IQN block 7-3
building models 4-10
code optimization 4-11
common characteristics 4-3
Division IQN block 7-232
Float to IQN block 7-233
Fractional part IQN block 7-235
Fractional part IQN x int32 block 7-236
Integer part IQN block 7-244
Integer part IQN x int32 block 7-245
IQN to Float block 7-248
IQN x int32 block 7-249
IQN x IQN block 7-250
IQN1 to IQN2 block 7-252
IQN1 x IQN2 block 7-254
Magnitude IQN block 7-256
Q format notation 4-5
Saturate IQN block 7-269

Square Root IQN block 7-289
Trig Fcn IQN block 7-298

IQ numbers
convert from float 7-233
convert to different IQ 7-252
convert to float 7-248
fractional part 7-235
integer part 7-244
magnitude 7-256
multiply 7-250
multiply by int32 7-249
multiply by int32 fractional result 7-236
multiply by int32 integer part 7-245
square root 7-289
trigonometric functions 7-298

IQN to Float block 7-248
IQN x int32 block 7-249
IQN x IQN block 7-250
IQN1 to IQN2 block 7-252
IQN1 x IQN2 block 7-254

M
Magnitude IQN block 7-256
math blocks. See IQ Math library
memory management 1-28
messages

F2812 eZdsp 7-172
model

add blocks 1-35
building overview 1-29
creation overview 1-25
IQmath library 4-10

multiplication
IQN x int32 7-249
IQN x int32 fractional part 7-236
IQN x int32 integer part 7-245
IQN x IQN 7-250
IQN1 x IQN2 7-254

Index-3

Index

O
optimization code 4-11

P
Park Transformation block 7-257
phase conversion 7-229
PID controller 7-259
PWM blocks

C281x 7-188

Q
Q format 4-5
quadrature encoder pulse circuit

C28x 7-200

R
ramp control block 7-263
ramp generator block 7-265
Read From Memory block 7-237
reference frame conversion

inverse Park transformation 7-246
Park transformation 7-257

reset 1-29
RTDX

from 7-239
to 7-295

S
sample time

F2812 eZdsp 7-21
Saturate IQN block 7-269
scheduling 1-10
Scheduling

watchdog 7-227
SCI Receive

Host-side 7-271
SCI Setup

Host-side 7-276
SCI Transmit

Host-side 7-279
SCI Transmit and Receive blocks

Host-side
Setup 7-276

serial communications interface
C280x/C28x3x receive 7-97
C280x/C28x3x transmit 7-104
C281x receive 7-204
C281x transmit 7-210

serial peripheral interface
C280x/C28x3x receive 7-110
C280x/C28x3x transmit 7-113
C281x receive 7-216
C281x transmit 7-219

signed fixed-point numbers 4-5
simulation parameters

automatic 1-33
Space Vector Generator block 7-282
Speed Measurement block 7-284
Square Root IQN block 7-289
startup c2000lib 1-31
supported hardware 1-3
Switch External Mode Configuration block 7-291
system requirements 1-3

T
target model creation 1-25
timing

interrupts 1-10
To RTDX block 7-295
Trig Fcn IQN block 7-298

W
waveforms 7-190
Write To Memory block 7-292

Index-4

	toc
	Getting Started
	Product Overview
	Introduction
	Product Description

	Setting Up and Configuring
	System Requirements
	Supported Hardware
	Installing and Configuring Software
	Verifying the Configuration

	Code Composer Studio
	Using Code Composer Studio with Target Support Package Software
	Default Project Configuration
	Default Build Options in the CustomMW Configuration

	Data Type Support
	Scheduling and Timing
	Overview
	Timer-Based Interrupt Processing
	High-Speed Peripheral Clock

	Asynchronous Interrupt Processing

	Sharing General Purpose Timers between C281x Peripherals
	Example 1
	Example 2

	Overview of Creating Models for Targeting
	Accessing the Target Support Package Block Library
	Online Help
	Blocks with Restrictions
	Blocks to Avoid Using in Your Models
	Blocks That Require Specific Settings

	Setting Simulation Configuration Parameters
	System Target Types and Memory Management

	Building Your Model
	F2812, F2808, and F28335 eZdsp Reset Sequence

	Using the c2000lib Blockset
	Introduction
	Hardware Setup
	Starting the c2000lib Library
	General
	Chip Support
	Optimized Libraries

	Setting Up the Model
	Adding Blocks to the Model
	Generating Code from the Model

	Configuring Timing Parameters for CAN Blocks
	The CAN Blocks
	Setting Timing Parameters
	Accessing the Timing Parameters
	Determining Timing Parameter Values
	CAN Bit Timing Example

	Parameter Tuning and Signal Logging
	Overview
	Using External Mode
	Configuring the Host Vector CAN Application Channel
	Using Supported Objects and Data Types
	Tuning Parameters
	Viewing and Storing Signal Data
	Manual Configuration For External Mode
	Limitations

	Using a Third Party Calibration Tool

	Configuring Acquisition Window Width for ADC Blocks
	What Is an Acquisition Window?
	Configuring ADC Parameters for Acquisition Window Width
	Accessing the ADC Parameters
	Examples

	Using the IQmath Library
	About the IQmath Library
	Introduction
	Common Characteristics
	References

	Fixed-Point Numbers
	Notation
	Signed Fixed-Point Numbers
	Q Format Notation
	Example — Q.15
	Example — Q1.30
	Example — Q-2.17
	Example — Q17.-2

	Building Models
	Overview
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code
	Double and Single-Precision Parameter Values

	Programming Flash Memory
	Introduction
	Installing TI Flash APIs
	Configuring the DSP Board Bootloader
	Configuring the Software for Automatic Flash Programming
	Selectively Erase, Program, or Verify Specific Flash Sectors
	Placing Additional Code or Data on Unused Flash Sectors

	Block Reference
	C280x (c280xlib)
	C2802x (c2802xlib)
	C2803x (c2803xlib)
	C281x (c281xlib)
	C28x3x (c2833xlib)
	C28x DMC (c28xdmclib)
	C28x IQmath (tiiqmathlib)
	Host SCI Blocks (c2000scilib)
	RTDX Instrumentation (rtdxBlocks)
	Target Preferences (c2000tgtpreflib)

	Blocks — Alphabetical List
	Index

	tables
	GP Timer Use for C281x Peripheral Blocks
	GPIO A MUX
	GPIO B MUX
	GPIO A MUX
	GPIO B MUX

